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Absorption and photoluminescence in organic cavity QED
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Organic microcavities can be engineered to reach exotic quantum regimes of strong and ultrastrong light-matter
coupling. However, the microscopic interpretation of their spectroscopic signals can be challenging due to the
competition between coherent and dissipative processes involving electrons, vibrations, and cavity photons. We
develop here a theoretical framework based on the Holstein-Tavis-Cummings model and a Markovian treatment
of dissipation to account for previously unexplained spectroscopic features of organic microcavities consistently.
We identify conditions for the formation of dark vibronic polaritons, a class of light-matter excitations that are
not visible in absorption but lead to strong photoluminescence lines. We show that photon leakage from dark
vibronic polaritons can be responsible for enhancing photoluminescence at the lower polariton frequency, and
also can explain the apparent breakdown of reciprocity between absorption and emission in the vicinity of the bare
molecular transition frequency. Successful comparison with experimental data demonstrates the applicability of
our theory.
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I. INTRODUCTION

The experimental realization of the strong and ultrastrong
coupling regimes of cavity quantum electrodynamics with
organic matter [1–21] has stimulated interest in the develop-
ment of cavity-enhanced optoelectronics [9,22–26], quantum
nonlinear optical devices [27–30], and chemical reactors
[31–33]. In organic microcavities, strong light-matter coupling
is possible at room temperature for cavity quality factors as
low as Q ∼ 10 using metallic mirrors [4,15]. These accessible
conditions can facilitate experiments on the one hand by
eliminating the need to nanofabricate dielectric mirrors with
high Q factors, as is the case with inorganic microcavities [34].
On the other hand, organic microcavities with lossy mirrors can
also obscure the interpretation of spectral measurements, as
the time scales associated with coherent light-matter coupling,
photon decay, dipole decay, and vibrational motion can all
be comparable. It is thus necessary to develop a theoretical
framework that can take into account these competing coherent
and dissipative dynamical processes consistently and provide
a framework that can be used to interpret a wide variety of
spectral measurements.

Early experiments on strong coupling with metallic micro-
cavities by Hobson et al. [4] showed the emergence of a strong
and narrow emission photoluminescence peak in a region with
negligible absorption. Such results were unexpected because
reciprocity dictates that a strong emitter should also be a good
absorber [35]. Since the sharp emission line was not dispersive
and was close to the bare electronic transition frequency, it was
attributed to incoherent localized molecular states that could
not exchange energy with the cavity field. This point of view
was developed within a quasiparticle approach by Litinskaya
et al. [36–38], who introduced the so-called incoherent exciton
reservoir to partially account for the observed photolumines-
cence spectra [39,40], treating the electron-vibration coupling
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perturbatively. However, recent experiments have identified
further spectral features in the emission and absorption spectra
of organic microcavities [15,41] that cannot be consistently
explained by quasiparticle theories [36–38,42]. The conflicts
between existing theories and experiments become more
pronounced as the Rabi frequency exceeds the intramolecular
vibration frequency.

Vibrational replicas in the spectra of molecular crystals
inside optical cavities were first reported by Holmes and
Forrest [43], for Rabi frequencies smaller than the intramolec-
ular vibration frequency. Several observed features in the
photoluminescence signals where captured by a quantum
model developed by La Rocca et al. [44,45]. Spano [46]
developed a numerical approach to show that allowing the
admixture of multiple vibronic transitions could lead to an
effective decoupling between electron and vibrational degrees
of freedom and also reduce the effect of inhomogeneous
broadening. This numerical insight was further developed and
generalized in Ref. [33], where we introduced conditions under
which electronic and vibrational degrees of freedom in the
lower and upper polariton states become effectively decoupled
for all energy disorder configurations. The main condition for
establishing this so-called polaron decoupling regime [33]
is that the Rabi coupling

√
N! must exceed the vibronic

coupling strength λ2ωv for molecular ensembles with large
N . Signatures of polaron decoupling in the lower polariton
state could be resolved for ratios as small as

√
N!/λ2ωv ≈ 3,

in systems with small disorder and weak vibronic coupling.
One direct consequence of polaron decoupling is the reduction
of the reorganization energy of excited electrons, which could
be exploited to enhance electron transfer reaction rates [33].
Subsequent variational approaches for the description of the
lower polariton state [47,48] have confirmed the emergence of
polaron decoupling in molecular ensembles.

The theoretical tool that has improved our understanding
of strongly coupled organic microcavities is the so-called
Holstein-Tavis-Cummings (HTC) model, first introduced by
Ćwik et al. [49] to study polariton condensation with molecular
ensembles. The model combines concepts from condensed

2469-9926/2017/95(5)/053867(24) 053867-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.95.053867


FELIPE HERRERA AND FRANK C. SPANO PHYSICAL REVIEW A 95, 053867 (2017)

matter physics [50,51] and quantum optics [52], by treating the
quantized electronic, nuclear, and photon degrees of freedom
on equal footing, under the rotating-wave approximation for
the cavity-matter coupling. This fully quantized theory gener-
alizes alternative approaches that treat the nuclear degrees of
freedom classically [29,30,53], as well as quasiparticle theo-
ries that treat the electron-vibration coupling perturbatively
[36–38,54]. The HTC model has a rich vibronic polariton
structure in the frequency region between the conventional
lower and upper polariton transmission doublet [33,46], but
in order to build a complete theoretical framework for
the interpretation of organic microcavity spectroscopy, it is
also necessary to treat the dissipative dynamics of organic
polaritons consistently.

In Ref. [55], we introduce an open quantum systems
approach to compute the absorption and photoluminescence
spectra of organic microcavities and successfully compare our
theory with experiments. In this work, we further elaborate on
the technical aspects the theory, providing additional insights
into the formal structure of the HTC model, the associated
vibronic polariton eigenstates, and the modeling of spectro-
scopic observables. We finally discuss possible improvements
of the developed theory and propose experiments to test our
predictions.

II. HOLSTEIN-TAVIS-CUMMINGS MODEL

We consider an ensemble of N organic emitters inside an
optical cavity, which can be either individual molecules or
molecular aggregates. The system can be described by the
Holstein-Tavis-Cummings (HTC) Hamiltonian [33,46–49],
which reads

Ĥ = ωc â†â

+ωv

N∑

n=1

b̂†nb̂n +
N∑

n=1

[ωe + ωvλ(b̂n + b̂†n)]|en⟩⟨en|

+ (!/2)
N∑

n=1

(|gn⟩⟨en|â† + |en⟩⟨gn|â), (1)

where ωe = ω00 + ωvλ
2 is the vertical Frank-Condon tran-

sition frequency, with ω00 being the frequency of the zero-
phonon (0-0) vibronic transition, ωv is the intramolecular
vibrational frequency, and λ2 is the Huang-Rhys factor
[51], which quantifies the strength of vibronic coupling.
The operator b̂n annihilates one quantum of vibration on
the nth chomophore. The operator â annihilates a cavity
photon at frequency ωc, and ! is the single-particle vacuum
Rabi frequency, which can be on the order of 100 meV
in plasmonic nanocavities [56]. In microcavities, collective
couplings

√
N! ∼ 0.7 − 1.0 eV have been reported [11,12].

In microcavities, the photon frequency ωc depends on the
in-plane wave vector k∥ of the cavity mode. The HTC model in
Eq. (1) implicitly assumes that all molecular transitions couple
equally strong to photons having a specific value of k∥. This can
only be justified for lossy microcavities near k∥ = 0 (normal
incidence), where the photon dispersion cannot be resolved
within the cavity linewidth. Despite this simplification, we
will consider the polariton structure of the HTC model for

higher in-plane momenta k∥ > 0 in later sections. Throughout
this work, we assume that the cavity detuning, defined as $ ≡
ω00 − ωc, vanishes exactly at normal incidence.

We ignore energetic disorder in Eq. (1), since for parameters
consistent with experimental data [4,39–41], we find that the
inhomogeneous broadening associated with energy disorder
does not contribute significantly to the overall absorption
and emission lineshapes [55]. Within the HTC model, all
molecules in the ensemble couple equally strong to the electric
field of the near-resonant cavity mode Ec, which ignores the
possibility of molecules being oriented in the sample such
that the product µ · Ec is negligibly small. We expect such
uncoupled molecules to behave as free-space emitters, possibly
exhibiting a cavity-enhanced emission rate typical of the weak
cavity-matter coupling regime [57]. The theory we develop
in the following sections applies only to those emitters in
the sample for which the HTC model provides an accurate
description of their photophysics.

A. Symmetry of the resonant HTC model

Before proceeding with the detailed analysis of the eigen-
states of the HTC model, we introduce a unique symmetry
transformation Ŝ that is shown to commute with the HTC
Hamiltonian Ĥ in Eq. (1). In this section we define the
transformation Ŝ and prove some of its basic properties for
the single-particle and many-particle cases.

For a single emitter (N = 1), we can rewrite the light-matter
coupling term of the HTC Hamiltonian Ĥ by expanding
the dipole transition and cavity field operators in the basis
spanned by the states |g ν,1c⟩ and |e ν̃ 0c⟩, which represent,
respectively, a molecule in its ground electronic state |g⟩
with vibrational eigenstate |ν⟩ (ν = 0,1,2, . . .) and one cavity
photon, and a molecule in the excited electronic state |e⟩,
with vibrational eigenstate |ν̃⟩ in the cavity vacuum. The
tilde overstrike indicates that the vibrational eigenstate has
ν̃ vibrational quanta in the excited-state harmonic nuclear
potential, whose minimum is shifted relative to the ground-
state potential minimum by a quantity λ along a dimensionless
vibrational coordinate [35,51]. The resulting light-matter
interaction Hamiltonian reads

ĤLM = 1
2

∑

νν ′

!ν̃ ′ν |eν̃ ′0c⟩⟨gν1c| + !νν̃ ′ |gν1c⟩⟨eν̃ ′0c|, (2)

where !ν̃ ′ν = ⟨ν̃ ′|ν⟩! is a vibronic Rabi frequency, weighted
by the vibrational overlap factor ⟨ν̃ ′|ν⟩. We introduce the
composite symmetry transformation Ŝ, defined as

Ŝ = σ̂xQ̂aD̂
†
g(λ)D̂†

e(−λ)'̂g'̂e, (3)

where '̂g and '̂e are the usual parity and displaced parity
operators

'̂g = eiπb†b , '̂e = eiπ b̃† b̃, (4)

acting on vibrational eigenstates of the ground- and
excited-state potentials as '̂g|ν⟩ = (−1)ν |ν⟩ and '̂e|ν̃ ′⟩ =
(−1)ν

′ |ν̃ ′⟩. The displacement operators have the usual
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FIG. 1. Stepwise illustration of the symmetry transformation Ŝ on
an arbitrary vibronic configuration involving the ground and excited
electronic potentials. The cavity is assumed to be resonant with the
electronic transition frequency. The downward arrows represent the
action of Ŝ and the upward arrows its inverse. The horizontal axis
represent the dimensionless vibrational coordinate.

definition (Im[λ] = 0)

D̂(λ) = eλ(b†−b), (5)

such that displaced harmonic oscillator eigenstates are defined
as |ν̃⟩ = D̂†(λ)|ν⟩ [35]. The definition of Ŝ also includes
the Pauli matrix σx in the {|e⟩,|g⟩} basis, i.e., σ̂x = |g⟩⟨e| +
|e⟩⟨g| as well as the one-photon cavity quadrature operator
Q̂a = |1c⟩⟨0c| + |0c⟩⟨1c|, in the truncated Fock space. By
construction, the symmetry transformation Ŝ is unitary, i.e.,
Ŝ†Ŝ = 1, as illustrated in Fig. 1.

We prove in Appendix A that the transformation Ŝ com-
mutes with the light-matter term ĤLM. Therefore, an eigenstate
|ϵj ⟩ of the light-matter term ĤLM is a simultaneous eigenstate
of Ŝ, satisfying the eigenvalue equation Ŝ|ϵj ⟩ = sj |ϵj ⟩, with
s2
j = 1. We can thus classify the eigenstates of ĤLM according

to the symmetry eigenvalue sj . However, the total system
Hamiltonian Ĥ also includes diagonal terms that describe the
bare cavity photon and molecular degrees of freedom, and their
commutation properties with the symmetry transformation
Ŝ also need to be established. These diagonal terms can be
written in the basis described above as

Ĥ − ĤLM =
∑

ν=0,1,...

(ωc + νωv) |g ν 1c⟩⟨g ν 1c|

+
∑

ν̃=0,1,...

(ω00 + ν̃ωv)|e ν̃ 0c⟩⟨e ν̃ 0c|. (6)

Equation (6) shows that under conditions of exact cavity-
matter resonance, i.e., ω00 = ωc, we also have

[(Ĥ − ĤLM),Ŝ] = 0 = [Ĥ,Ŝ].

In other words, under exact resonance the eigenstates of the
HTC model for N = 1 are also eigenstates of the symmetry
transformation Ŝ, and the HTC Hamiltonian matrix can be
factorized into block-diagonal submatrices that conserve the
symmetry eigenvalue s.

For many-particle systems (N ! 2), the internal degrees of
freedom of the nth particle in the ensemble can be still be
associated with a symmetry transformation Ŝn of the form in
Eq. (3). Many-particle eigenstates of the HTC model |ϵj ⟩ can
thus be classified according to the composite transformation
Ŝα that takes into account the symmetry of the many-body
electronic state under permutations of the molecules in the
ensemble. One possible choice relevant for the one-excitation
manifold is

Ŝα =
N∑

n=1

cαnŜn, (7)

where the set of orthonormal coefficients cαn encode the sym-
metry under particle permutations, characterized the quantum
number α.

B. Symmetry classification of diabatic vibronic polaritons

For individual particles (N = 1), it proves convenient to
introduce diabatic vibronic polaritons of the form

|ν±⟩ = 1√
2

(|e ν̃ 0c⟩ ± |g ν 1c⟩), (8)

with ν̃ = ν, which become accurate polariton eigenstates of
the system Hamiltonian Ĥ for

√
N!/ωv ≪ 1 [44,58]. From

the definition of Ŝ in Eq. (3), the following relations hold:

Ŝ|ν+⟩ = (−1)ν |ν+⟩, (9)

Ŝ|ν−⟩ = (−1)ν+1|ν−⟩, (10)

which are eigenvalue relations with eigenvalues sj = ±1,
depending on the vibrational configuration. We refer to
those diabatic states with eigenvalue s = 1 as even vi-
bronic polaritons and those with s = −1 as odd vibronic
polaritons.

As an example, let us consider the system Hamiltonian
Ĥ for N = 1, in a truncated subspace spanned by the
diabatic polariton states {|0±⟩,|1±⟩,|2±⟩}. This basis set
splits according to the symmetry eigenvalue s into an even
subspace S+ = {|0+⟩,|1−⟩,|2+⟩} and an odd subspace S− =
{|0−⟩,|1+⟩,|2−⟩}. The single-molecule Hamiltonian matrix
under exact resonance (ωc = ω00) can thus be written in the
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block-diagonal form

Ĥ/ωv =

⎛

⎜⎜⎜⎜⎜⎝

!̄00̃ !̄01̃ !̄02̃ 0 0 0
!̄01̃ 1 − !̄11̃ !̄12̃ 0 0 0
!̄02̃ !̄12̃ 2 + !̄22̃ 0 0 0

0 0 0 −!̄00̃ !̄01̃ !̄02̃
0 0 0 !̄01̃ 1 + !̄11̃ !̄12̃
0 0 0 !̄02̃ !̄12̃ 2 − !̄22̃

⎞

⎟⎟⎟⎟⎟⎠
, (11)

where !̄νν̃ = (!/2ωv) ⟨ν|ν̃⟩ are vibronic Rabi frequencies in
units of the vibrational frequency ωv. We have set the zero of
energy to be at the cavity frequency ωc, which corresponds to
a rotating frame transformation [59].

The even parity sub-block in Eq. (11) (on the upper
left) includes the conventional diabatic upper polariton. As
we discuss below, this sub-block supports a zero-energy
eigenvalue. The odd parity sub-block (lower right) involves
the conventional lower polariton. The off-diagonal couplings
within a given sub-block admix diabatic polaritons associated
with different molecular vibronic transitions, such that the
number of vibrational quanta in the grounds and excited-state
harmonic nuclear potentials is not conserved. This admixture
becomes significant for Rabi couplings !/ωv ≈ 2.

III. DARK VIBRONIC POLARITONS

We introduce the concept of a dark vibronic polariton [55]
to describe eigenstates of the Holstein-Tavis-Cummings model
|ϵj ⟩ for which we have

µGj = ⟨G|µ̂|ϵj ⟩ = 0, (12)

with |G⟩ ≡ |g1 01,g2 02, . . . ,gN 0N ⟩|0c⟩ being the absolute
ground state of the organic cavity, having no electronic,
vibrational, or cavity excitations, for a dipole operator written
as µ̂ = µ(µ̂(+) + µ̂(−)), where

µ̂(+) =
N∑

n=1

|gn⟩⟨en|, (13)

with µ̂(−) = [µ̂(+)]†. The molecular transition dipole moment
µ is assumed identical for each emitter. Absorption of light
from bound dielectric or surface modes of the microcavity
[57,60] by the j th polariton eigenstate is proportional to
|µGj |2, just as in free space spectroscopy [51]. Dark vibronic
polaritons are therefore invisible in bound-mode absorption at
their eigenfrequencies ωj , which does not prevent them from
emitting light in photoluminescence, as we discuss in detail
below.

We identify two types of dark vibronic polaritons: X
and Y types [55]. The main distinguishing feature between
these two types of polariton eigenstates is the degeneracy of
their eigenfrequencies: while X-type vibronic polaritons are
nondegenerate, Y -type states are (N − 1)-fold degenerate. We
show below that although X-type dark vibronic polaritons
can be partially visible in conventional microcavity absorption
measurements, dark vibronic polaritons of the Y type remain
invisible for any type of absorption measurement, as long as
kbT/ωv ≪ 1, which is typical at room temperature.

A. Single-particle states

Before discussing the structure of dark vibronic polaritons
of the X and Y type in more detail, we need to define diabatic
single-particle and two-particle material and polariton states.
These are illustrated in Fig. 2. Single-particle material states
represent a molecular ensemble hosting a single vibronic or
vibrational excitation, or in the language of ordered molecular
aggregates, a single exciton or phonon. We represent single-
particle vibronic material states as

|α,ν̃,0c⟩ =
N∑

n=1

cαn|g101, . . . ,en ν̃n . . . gN0N,0c⟩, (14)

where α is a quantum number associated with permutation
symmetry of the electronic degrees of freedom, such that the
expansion coefficients satisfy |cαn|2 = 1/N , i.e., all molecules
are equally likely to host the vibronic excitation ν̃ in state
|e⟩. There are thus N possible values of α. In the language
of molecular aggregates with translational invariance [51], the
quantum number α coincides with the exciton quasimomentum
k, which can take N possible values given by multiple
integers of 2π/NaL, where aL is the lattice constant. For
organic cavities, however, there is no such translational
symmetry as each emitter is randomly located in the sample.
Permutation symmetry thus emerges from the fact that within
the Holstein-Tavis-Cummings model, all molecules in the
ensemble are equally coupled to the confined electric field of
the microcavity. In quantum optics, this permutation symmetry

FIG. 2. (a) Displaced-potential representation of a single-particle
material state, having a vibronic excitation |enν̃n = 2⟩ on the nth
molecule of the ensemble. (b) Two-particle material state with a
vibronic excitation (ν̃ = 2) on molecule n and a vibrational excitation
(ν = 1) on molecule n − 1.
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is also known to emerge from the Tavis-Cummings model
with homogeneous couplings [52], when represented in the
collective spin angular momentum basis [61].

Following Ref. [33], we distinguish states whose electronic
degrees of freedom are totally symmetric with respect to
particle permutation by the quantum number α = α0, such
that cα0n = 1/

√
N for all n. For molecular aggregates, this

would correspond to a k = 0 exciton, which is super-radiant
for J aggregates [62]. In the HTC model, only single-particle
states with quantum number α0 can directly exchange energy
with the cavity field, under the assumption of homogeneous
Rabi coupling. There are thus N − 1 single-particle states
with α ̸= α0 that are not totally symmetric with respect to
permutations and thus do not couple directly to the cavity
field. These states are the cavity analogs of the k ̸= 0 excitons
in molecular aggregates, which do not couple to light directly,
but can be involved in nonradiative processes [51].

The Holstein-Tavis-Cummings model in Eq. (1) can res-
onantly couple the totally symmetric single-particle material
states |α0,ν̃,0c⟩ with a vibrationless single-photon state to give
a diabatic vibronic polariton state of the form

|P ±
ν̃ ⟩ = 1√

2
(|α0,ν̃,0c⟩ ± |g101,g202, . . . ,gN0N,1c⟩), (15)

with diabatic energies

E±
ν̃ = ν̃ωv ±

√
N!|⟨0|ν̃⟩|/2. (16)

We recover the conventional lower- and upper-polariton
states for ν̃ = 0 [33,46], associated with the polariton splitting
(E+

0̃
− E−

0̃
) =

√
N!|⟨0|0̃⟩|.

B. Two-particle states

Two-particle states represent a configuration where one
molecule in the ensemble hosts a vibronic excitation in state
|e⟩, while a different molecule hosts a vibrational excitation
in state |g⟩. Two-particle states are important to describe the
optical spectra of molecular aggregates in free space [51]
and in microcavities [46]. Three-particle and multiparticle
states can be defined in a similar way, but for the Rabi
coupling strengths of interest in this work

√
N!/ωv " 3,

their contribution to the absorption and emission spectra in
the frequency region within the conventional lower and upper
polariton doublet is negligible. For larger Rabi couplings,
possibly in the ultrastrong coupling regime [11–14,16], such
multiparticle excitations should not be ignored [33].

In general, we can represent two-particle vibronic-
vibrational material states as

|αβ,ν̃ ′ν,0c⟩

=
∑

n̸=m

∑

m

Aβm
αn |g101, . . . ,enν̃

′
n, . . . ,gmνm, . . . ,gN0N,0c⟩,

(17)

where the amplitude A
βm
αn is defined by the permutation sym-

metry quantum number of the electronic degrees of freedom
α, and also the permutation quantum number of the vibrational
configuration β, for ν > 0. The definition in Eq. (17) involves
N (N − 1) possible vibronic-vibrational configurations.

Let us write the light-matter term of the HTC model
ĤLM in terms of the totally symmetric electronic state |α0⟩ =∑N

l=1 |el⟩/
√

N as [33]

ĤLM =
√

N!

2
(|α0⟩⟨g1,g2, . . . ,gN |â + H.c.), (18)

where we have simply changed to a collective electronic
basis in Eq. (1). We can use this form of ĤLM to understand
what photonic states couple to the two-particle material states
defined in Eq. (17). For example, we have

⟨g101, . . . ,gN0N,1c|ĤLM|αβ,ν̃ ′ν,0c⟩ = 0, (19)

which by the arguments in Appendix B implies that the
state |αβ,ν̃ ′ν,0c⟩ has no transition dipole moment to the
absolute ground state of the cavity. In general, two-particle
material states can couple to single-photon states having ν ! 1
vibrational excitations, given by

|β,ν,1c⟩ =
N∑

n=1

cβn|g101, . . . ,gnνn, . . . ,gN0N,1c⟩, (20)

representing a single-cavity photon state dressed by a collec-
tive vibrational excitation with permutation quantum number
β. The associated light-matter coupling element is given by

⟨β ′,ν,1c|ĤLM|αβ,ν̃ ′ν,0c⟩ = !

2
⟨0|ν̃ ′⟩

∑

m

∑

l ̸=m

c∗
β ′mA

βm
αl ,

(21)

where the double summation contains N (N − 1) terms. This
expression can be considered as a type of selection rule
for the light-matter coupling between two-particle material
states and vibrationally dressed photon states. We focus here
on those two-particle material states for which the vibronic
configuration is totally symmetric under particle permutations;
i.e., we set α = α0 in Eq. (17) and

Aβm
α0n

= cβm√
N − 1

, (22)

for all n. Inserting this expression in Eq. (21) gives

⟨β ′,ν,1c|ĤLM|α0β,ν̃ ′ν,0c⟩ =
√

N − 1
(

!

2

)
⟨0|ν̃ ′⟩δββ ′ .

(23)

The Kronecker δ factor δββ ′ is the cavity analog of phonon mo-
mentum conservation in systems with translational invariance.

In general, two-particle material states with nonsymmetric
vibronic configurations (α ̸= α0) can couple with vibration-
photon states according to the matrix element in Eq. (21).
However, we find that the Rabi splittings associated with
nonsymmetric vibronic configurations are much smaller than
the Rabi splittings associated with the totally symmetric
configuration defined by Eq. (22). We therefore neglect the
states in Eq. (17) for which α ̸= α0 from our analysis. Numer-
ical tests confirm that such two-particle material states with
nonsymmetric vibronic configurations represent a negligible
contribution to the polariton eigenstates in the frequency region
of the conventional lower and upper single-particle polaritons.

The coupling in Eq. (23) between two-particle material
states |α0β,ν̃ ′ν,0c⟩ and vibrationally excited single-photon
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states of the cavity gives rise to diabatic two-particle polariton
states [46] of the form

|P ±
νν̃ ′ ,β⟩ = 1√

2
(|α0β,ν̃ ′ν,0c⟩ ± |β,ν,1c⟩), (24)

where the first term in the superposition is given by Eqs. (17)
and (22). On resonance (ωc = ω00), these two-particle polari-
tons have the diabatic energies

E±
νν̃ ′ = (ν̃ ′ + ν)ωv ±

√
N − 1 ! |⟨0|ν̃ ′⟩|/2, (25)

which split into a lower (minus sign) and upper (plus sign)
diabatic polariton manifold, each being N -fold degenerate
according to the N energetically equivalent choices of the
permutation quantum number β. The diabatic two-particle
polaritons in Eq. (24) can become accurate eigenstates of the
HTC Hamiltonian for

√
N!/ωv ≪ 1.

For the symmetric quantum number β = α0, the two-
particle diabatic vibronic polariton |P ±

νν̃ ′ ,α0⟩ [Eq. (24)]
can couple to conventional single-particle polaritons |P ±

ν̃ ′ ⟩
[Eq. (15)] by the light-matter term according to the matrix
elements

⟨P ±
ν̃ ′ |ĤLM|P +

νν̃ ′ ,α0⟩ = !

4
⟨ν̃ ′|ν⟩, (26)

⟨P ±
ν̃ ′ |ĤLM|P −

νν̃ ′ ,α0⟩ = −!

4
⟨ν̃ ′|ν⟩, (27)

independent of the number of molecules N .
We conclude this section by noting that the Holstein-

Tavis-Cummings model also allows the coupling between
single-particle material states |α ̸= α0,ν̃,0c⟩ [Eq. (14)] that
are not totally symmetric with respect to permutation, with
vibrationally excited photon states |β,ν,1c⟩. Such coupling
preserves the permutation symmetry quantum number, i.e.,

α = β ̸= α0. (28)

resulting in the nonzero HTC matrix element

⟨α,ν̃ ′,0c|ĤLM|P ±
νν̃ ′ ,β⟩ = ±δβα

⟨ν|ν̃ ′⟩√
2

(
!

2

)
, (29)

also independent of N . This expression is valid for the (N − 1)
possible values of α ̸= α0 (nonsymmetric superpositions). As
a consequence of this coupling, the otherwise dark collective
electronic excitations |α ̸= α0,ν̃,0c⟩ can admix with two-
particle polariton states |P ±

νν̃ ′ ,α⟩ given by Eq. (24), to borrow
a photonic component with ν ! 1 vibrational quanta. As we
discuss below, such admixture can be significant in the Rabi
coupling regime

√
N!/ωv ≈ 2, where the states involved in

the mixing become quasidegenerate.

C. Dark vibronic polaritons of the X type

We are interested in the eigenstates of the HTC Hamiltonian
Ĥ [Eq. (1)], which have energies close to the bare molecular
transition frequency, given the unexpectedly strong cavity
emission and weak absorption observed in this frequency
region [4,39–41]. In the rotating frame of the resonant cavity
mode, a polariton state at the bare molecular frequency satisfies

Ĥ|X⟩ = 0. (30)

FIG. 3. HTC model parameters. Solid lines are the parameters
for which we can define the zero-energy dark vibronic polariton |X⟩,
for different molecule numbers N , where N = 20 is representative of
the thermodynamic limit [47]. The dashed line shows the threshold
for polaron decoupling of the lower polariton state, defined as√

N!/λ2ωv = 1 for N ≫ 1. λ2 is the Huang-Rhys factor and ωv is
the intramolecular frequency. The shaded region represents the weak
coupling regime

√
N! " κ , where κ ∼ 0.6 ωv is a typical photon

decay rate for a microcavity with quality factor Q ∼ 10 [4]. The
cavity is assumed resonant with the zero-phonon electronic transition
at normal incidence.

In Appendix B we prove that indeed for a polariton eigenstate
that satisfies Eq. (30), the transition dipole moment to the
absolute ground state ⟨G|µ̂|ϵj ⟩ must vanish. According to the
definition in Eq. (12), the zero-energy polariton state |X⟩ is
therefore a dark vibronic polariton, which we call of the X
type. We show in Fig. 3 the numerically estimated values of the
HTC Hamiltonian parameters

√
N!/ωv and λ2 for which one

of the eigenstates of Ĥ satisfies Eq. (30), without degeneracies.
For completeness, we also shown in Fig. 3 what we define as
the polaron-decoupling threshold of the lower polariton state
in molecular ensembles [33], defined by the equality

√
N!/λ2ωv = 1.

For Rabi couplings a few times higher than this threshold,
the electronic and vibrational degrees of freedom of the
lower polariton state become separable, with deviations from
complete separability that scale as λ2/4N [33].

We can understand the emergence of the zero-energy dark
vibronic polariton |X⟩ as a destructive interference effect. For
N = 1, it is not difficult to show that only the even-symmetry
sub-block in Eq. (11) can have a zero-energy eigenvalue.
Therefore, we can expand the |X⟩ state in a diabatic polariton
basis from Eq. (8) to read

|X⟩ ≈ c0|0+⟩ − c1|1−⟩ − c2|2+⟩, (31)

where cν > cν+1 > 0 and λ > 0. We have assumed the same
even-symmetry truncated basis as in Eq. (11). The transition
dipole moment µGX is thus given by

µX ≈ µ(c0⟨0|0̃⟩ − c1⟨0|1̃⟩ − c2⟨0|2̃⟩); (32)
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i.e., the destructive interference between the vibrational over-
lap factors associated with the bare 0-0, 0-1, and 0-2 vibronic
transitions leads to the vanishing dipole moment for state |X⟩.
The destructive interference is more efficient when higher
energy polariton states are considered in the basis set.

Figure 3 shows that for any N it is always possible to
find values of the HTC model parameters for which Eq. (30)
holds, which generalizes the definition of the |X⟩ state in
Eq. (31) to the many-particle case. We note that for N ! 2,
the zero-energy |X⟩ state also acquires a two-particle polariton
character, due to the coupling between the conventional upper
polariton state |P +

0̃
⟩ with the symmetric two-particle polariton

state |P −
10̃

,α0⟩. This type of coupling, in addition to the
admixture of single-particle polariton states as in Eq. (31),
gives rise to a set of nondegenerate dark vibronic polaritons
that we call of the X type in the frequency region defined by
the conventional lower- and upper-polariton doublet.

D. Dark vibronic polaritons of the Y type

Dark vibronic polaritons of the Y type result from the
admixture of diabatic two-particle polariton states |P −

νν̃ ′ ,β⟩,
[Eq. (24)] with nonsymmetric (or dark) material vibronic
excitations |β,ν̃ ′,0c⟩, for β ̸= α0. This coupling is allowed
by the light-matter matrix element in Eq. (29), and gives rise
to two Y -type dark vibronic polaritons for each of the N − 1
nonsymmetric values of β. For example, when

√
N!/ωv ≈ 2,

there are Y -type polariton eigenstates in the spectral region
near the bare electronic frequency (ωj ≈ 0) that can be
approximately given by

|Ya⟩ ≈ a1|β,0̃,0c⟩ + a2|P −
10̃

,β⟩, (33)

|Yb⟩ ≈ b1|β,0̃,0c⟩ − b2|P −
10̃

,β⟩, (34)

where a1,a2,b1, and b2 are positive real numbers that do not
depend on β, since the coupling in Eq. (29) is independent of
the permutation quantum number. The states |Ya⟩ and |Yb⟩ are
thus each (N − 1)-fold degenerate. States of this form become
important in the description of the photoluminescence spectra.

In Fig. 4, we show a map that visually summarizes the
states and couplings involved in the formation of dark vibronic
polaritons of the X and Y types, indicating the different levels
of light-matter coupling allowed in the homogeneous HTC
model: (i) direct coupling of material and vibration-photon
states to form diabatic single- and two-particle polaritons,
(ii) the coupling of diabatic single- and two-particle polaritons
to form nondegenerate X states that are totally symmetric
with respect to permutation of vibronic and vibrational degrees
of freedom, and (iii) the coupling of nonsymmetric diabatic
two-particle polaritons with nonsymmetric collective vibronic
excitations (the so-called dark excitons) to form dark vibronic
polaritons of the Y type, which are (N − 1)-fold degenerate.

IV. DISSIPATIVE POLARITON DYNAMICS

In order to model the dissipative dynamics of organic
polaritons in low-Q microcavities, we ignore nonradiative
intramolecular relaxation [35] and assume the dissipative
dynamics of the polariton density matrix ρ̂(t), which describes
the state of the cavity, to be given by the Lindblad quantum

|Xj

|β, ν, 1c
Phonon-Photon

|α0β, ν̃ ν, 0c
Symmetric Two-particle

|g101, . . . , gN0N , 1c

Vibrationless Photon

Nonsymmetric Vibronic

|α = α0, ν̃ , 0c

Symmetric Vibronic

|α0, ν̃ , 0c

|Yj

β = α0

|P±
ν̃

β = α

|P±
νν̃ , β

FIG. 4. Illustration of the states (squares) and couplings (circles)
involved in the formation of dark vibronic polaritons of the X

and Y types. Collective single-particle vibronic excitations and
vibrationless photon states couple via the light-matter term in the
HTC model to form diabatic single-particle polaritons |P ±

ν̃ ⟩. Two-
particle diabatic polaritons |P ±

ν̃′ν,β⟩ arise from the coupling between
vibronic-vibrational collective states and a cavity photon dressed by a
vibrational collective excitation (phonon). The permutation quantum
number of two-particle state is totally symmetric with respect to
permutations of the vibronic excitation (quantum number α0), for any
of the N possible quantum numbers β for the vibrational excitation.
The states |P ±

ν̃′ν,β⟩ and |P ±
ν̃ ⟩ further admix to form nondegenerate

X-type polaritons when β is totally symmetric (β = α0). Each non-
totally-symmetric two-particle polariton |P ±

ν̃′ν,β ̸= α0⟩ can further
couple to the nonsymmetric single-particle vibronic excitations (dark
excitons) |α ̸= α0,ν̃

′,0c⟩ to form a manifold of N − 1 vibronic
polaritons of the Y type, preserving the permutation symmetry of
vibronic and vibrational excitations (α = β).

master equation [61,63]

d

dt
ρ̂(t) = −i[Ĥ,ρ̂(t)] + La[ρ̂(t)] + Lµ[ρ̂(t)]. (35)

The first term describes coherent polariton evolution as
determined by the Holstein-Tavis-Cummings Hamiltonian
H [Eq. (1)]. The term La[ρ̂(t)] describes the dissipative
evolution associated with the loss of cavity photons through
the mirrors (cavity leakage), and the term Lµ[ρ̂(t)] describes
the dissipative dynamics associated with radiative dipole
decay of the electronic degrees of freedom (fluorescence) into
bound modes of the nanostructure. The Lindblad form of the
dissipators read [61,63]

La[ρ̂(t)] = κ

2
(2âρ̂â† − {â†â,ρ̂}), (36)

Lµ[ρ̂(t)] =
∑

n

γn

2
(2σ̂−

n ρ̂(t)σ̂+
n − {σ̂+

n σ̂−
n ,ρ̂(t)}), (37)

where κ is the empty-cavity decay rate, σ̂−
n ≡ |gn⟩⟨en| is an

electronic transition operator, with σ̂+
n = [σ̂−

n ]†, and {Â,B̂}
denotes an anticommutator. The single-emitter decay rate γn

can be estimated from the classical Green’s function of the
optical nanostructure [64] and is not necessarily equal to the
fluorescence decay rate in free space [65].
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We implicitly assume in Eq. (37) that a typical distance
between emitters in the ensemble ⟨(xn − xm)⟩ is much larger
than the decay length of the equal-time two-point correlation
function ⟨Ê (−)

b (xn)Ê (+)
b (xm)⟩. If this is not the case, then site

nondiagonal terms in the dipole dissipator Lµ[ρ̂(t)] should be
taken into account, as well as coherent long-range interactions
between emitters [66]. We made a local-decay assumption here
for simplicity.

We can assume that all molecules in the ensemble have
identical transition dipole moments, and thus fluorescence rate
γe, and also that the spectral density of the electromagnetic
reservoir does not vary significantly in a frequency range on
the order of ∼

√
N! centered at the cavity frequency ωc. The

latter assumption is not accurate in the ultrastrong coupling
regime of cavity-matter coupling [67,68].

By expanding the quantum master equation in Eq. (35) in
terms of an eigenbasis of the HTC Hamiltonian Ĥ, and only
including terms that evolve at optical frequencies, we arrive at
the polariton master equation

d

dt
ρ̂(t) =

∑

ij

γij

2
(2|ϵi⟩⟨ϵj |ρ̂(t)|ϵj ⟩⟨ϵi | − {|ϵj ⟩⟨ϵj |,ρ̂(t)}),

(38)

where we use a notational convention in which eigenstates
|ϵi⟩ belong to the ground electronic state manifold for the
ith vibrational configuration of the molecules, and states |ϵj ⟩
represent polariton eigenstates (light-matter excitation). The
transition frequencies ωij = ϵj − ϵi > 0 are in the optical
regime of interest. The Lindblad (secular) form of the polariton
master equation in Eq. (38) describes simple birth-death
processes for the populations, as well as decay of polariton
coherences ρij ≡ ⟨ϵi |ρ̂|ϵj ⟩ due to radiative relaxation.

From the Lindblad master equation above, we obtain a
decay rate for the j th polariton eigenstate 0j =

∑
i γij (see

Appendix D) given by

0j = κ
∑

i

|⟨ϵi |â|ϵj ⟩|2 + Nγe

∑

j

|⟨ϵi |Ĵ−|ϵj ⟩|2, (39)

where we introduced a size-normalized collective transition
operator Ĵ− = µ(+)/

√
N . This is done for numerical conve-

nience, given the impossibility of simulating microcavities
with large N ≫ 104. For a numerically accessible system with
finite N ∼ 20, a normalized dipole decay rate of order unity
can be numerically computed and then scaled to realistic values
of Nγe in Eq. (39). This is done to get an accurate estimate for
the homogeneous spectral linewidth.

V. MODELING ORGANIC CAVITY SPECTROSCOPY

Having described the structure and properties of dark
vibronic polaritons of the X and Y types, our goal for the
remainder of this article is to understand how dark vibronic
polaritons manifest in the absorption and emission spectra
of organic microcavities. We focus on the three types of
measured signals: absorption through the mirrors A(ω), bound
mode absorption Ab(ω), and photoluminescence through the
mirrors or leakage photoluminescence SLPL(ω). Bound modes
refer to normal modes of the cavity for which the in-plane
wave vector exceeds the cutoff for total internal reflection

R(ω)Ip(ω)

T (ω)

(a) (b)

A(ω)

Ip(ω ) SLPL(ω)

SLPL(ω)ω)

SL

(c)

Ab(ω)Ip(ω)

FIG. 5. Spectral signals. (a) Reflection R, transmission T , and
absorption A = 1 − R − T of an external pump Ip(ω). Absorption is
due to spontaneous emission into bound modes of the microcavity. (b)
Leakage photoluminescence SLPL(ω) following weak laser pumping
at frequency ω′ > ω. Bound mode photoluminescence [46] is also
shown. (c) Bound mode absorption spectra Ab(ω), for laser driving
beyond cutoff for total internal reflection.

and thus the mode electric field decays exponentially on the
outer side of the cavity mirrors. Such bound modes can have
plasmonic or purely dielectric character [60,69]. In Fig. 5 we
illustrate the spectral measurements described in this work.
We do not consider photoluminescence into bound modes of
the nanostructure, which was discussed in Ref. [46] for J
aggregates in microcavities.

Conventional absorption through the mirrors A(ω) and
bound mode absorption Ab(ω) differ in the way an external
pump drives the cavity system. In the former case, a resonant
pump laser transfers photons from a free-space electromag-
netic mode (monochromatic laser) to the intracavity medium
through the partially reflecting mirrors [15]. This photon trans-
fer populates a polariton state |ϵj ⟩, which can then decay either
by converting an intracavity photon back to an external propa-
gating photon, giving rise to reflection R and transmission T ,
or by spontaneously emitting a photon into one of the bound
modes of the nanostructure [60]. The latter decay channel
leads to attenuation of the total reflected plus transmitted field,
relative to the input photon flux. Since conservation of photon
flux thus requires that R + T + A = 1 at all pump frequencies,
the conventional absorption spectra is defined as [41]

A(ωp) = 1 − R(ωp) − T (ωp), (40)

where R(ωp) and T (ωp) are the reflection and transmission
spectra, normalized to the pump intensity at frequency ωp.
In this type of absorption spectra, an external photon must
first populate a polariton state, resulting in a dependence
of the signal on matrix elements of the operator â. Once a
polariton is populated, conventional absorption is the result
of dipole emission from polaritons into bound modes of the
nanostructure, which in turn is determined by matrix elements
of the dipole operator µ̂ between polariton states. On the other
hand, bound mode absorption Ab(ω), as well as fluorescence,
can directly probe the material polarization µ̂, as the probe
field is trapped inside the intracavity medium by total internal
reflection [60,69].

In general, nonradiative decay processes involving elec-
tronic degrees of freedom also contribute to A(ω); however,
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the time scales for nonradiative molecular relaxation τnr ∼
1–10 ps [35] can be expected to be slower than the radiative
time scales 1/κ ∼ 1/Nγe ∼ 10 fs in low-Q microcavities
[4,65].

A. Output spectrum and cavity absorption

The reflection spectra R(ω) and transmission spectra T (ω)
are given by the spectrum of the electric field operator Ê(x,t)
[
√

Hz] on either external side of a microcavity driven by a
pump photon flux, denoted as |⟨F̂1⟩|2 [Hz], incoming on one
side of the cavity. We show in Appendix C, using a Schrödinger
picture input-output formalism [61], that if we denote by Ê1
the field reflected on the same side as the incoming pump field,
and by Ê2 the field transmitted on the other side of the cavity,
conservation of photon flux requires that

|⟨Ê1⟩|2 + |⟨Ê2⟩|2 = |⟨F̂1⟩|2, (41)

in steady state. This becomes the usual empty-cavity relation
R + T = 1 after normalization by the incoming flux. In
general, Eq. (41) needs to be integrated over all frequencies to
obtain a relation in units of photon number.

For a cavity with an intracavity medium, as discussed above,
polariton fluorescence into bound modes leads to attenuation
of the reflected and transmitted fields. If we assume that a
polariton can emit radiation at a single frequency, photon flux
conservation reads

|⟨Êb⟩|2 + |⟨Ê1⟩|2 + |⟨Ê2⟩|2 = |⟨F̂1⟩|2, (42)

where Êb is the bound electric field flux operator. Normalizing
by the input flux gives Eq. (40). This relation shows that the
through-mirror absorption spectra A(ω) = 1 − R(ω) − T (ω)
is determined by the steady-state spectrum of the the bound
electric field Sb(ω) ∝

∫
dτ ⟨Ê †

b (τ )Êb(0)⟩eiωτ , which as shown
in Appendix C 2, is proportional to the bound fluorescence
spectra

Sb(ω) ∝
∫ ∞

0
dτ ⟨µ̂(−)(τ )µ̂(+)(0)⟩ eiωτ , (43)

where µ̂(+) is defined in Eq. (13). Integrating the fluorescence
spectra over all emission frequencies gives the total number
of photons emitted into the bound modes, after pumping the
cavity with a monochromatic field at frequency ωp. Therefore,
the value of the absorption coefficient A at the pump frequency
ωp is given by

A(ωp) =
∫ ∞

0
dω

∫ ∞

0
dτ ⟨µ̂(−)(τ )µ̂(+)(0)⟩ eiωτ , (44)

up to a proportionality factor that depends on the density of
states of the electromagnetic field inside the cavity.

In Appendix E, we develop a model to evaluate the spectrum
of the dipole fluctuations in Eq. (44), which determine the
absorption of a weak pump field at frequency ωp. The
external periodic driving is considered as a perturbation to
the Holstein-Tavis-Cummings Hamiltonian Ĥ, which defines
a time-dependent driven HTC model of the form Ĥ (t) =
Ĥ + V̂p(t), where

V̂p(t) = !p(â† e−iωpt + â eiωpt ) (45)

is the periodic driving term with frequency ωp and amplitude
!p ≪

√
N! ≪ ωc. We obtain the steady-state polariton pop-

ulation ρj of the system in the presence the external driving,
to second order in !p. The dipole fluctuations are evaluated
within the no-quantum-jump (NQJ) approximation, which we
introduce to simplify the quantum regression formula. After
performing the time and frequency integrations in Eq. (44), we
obtain the expression

A(ωp) = π |!p|2
∑

j

|⟨G|â|ϵj ⟩|2(κGj/0j )
(ωp − ωjG)2 + κ2

Gj

Fj , (46)

where κGj is the decay rate for the optical coherence ρGj ≡
⟨G|ρ̂|ϵj ⟩, which we can allow to account for nonradiative
relaxation processes as well (details in Appendix E). We have
also defined the total dipole emission strength of the j th
polariton eigenstate as

Fj =
∑

i

|⟨ϵi |µ̂(+)|ϵj ⟩|2. (47)

Equation (46) shows that if Fj = 0 for a given polariton
eigenstate |ϵj ⟩, there is no resonant absorption at that polariton
frequency either. In other words, polaritons that fluorescence
poorly into bound modes of the nanostructure cannot attenuate
the reflected and transmitted fields efficiently. On the other
hand, even when a polariton state |ϵj ⟩ can have a strong bound
fluorescence, it cannot attenuate the driving field efficiently
when its vibrationless photonic component ⟨G|â|ϵj ⟩ is negligi-
ble or the pump field is far detuned from ωjG, which suppresses
its stationary polariton population ρj .

The bound absorption spectrum Ab(ω) is also given by the
Fourier transform of a dipole correlation function as in Eq. (43)
for bound fluorescence, thus satisfying the usual reciprocal
relation between absorption and emission in free space [35].
The stationary bound absorption spectrum taking the absolute
ground state |G⟩ as initial condition is thus given by

Ab(ω) =
∑

j

|⟨ϵj |µ̂(−)|G⟩|2 (0j /2)
(ω − ωjG)2 + (0j /2)2

, (48)

where j labels polariton eigenstates and where 0j is given by
(39).

B. Cavity photoluminescence

Leakage photoluminescence (LPL) is detected on either
side of an organic cavity, as illustrated in Fig. 5. The LPL
spectra SLPL(ω) is thus directly proportional to the spectrum of
the external field operators Ê1(t) and Ê2(t), at the reflection or
the transmission side of the cavity, respectively. As discussed
in Appendix C, for a classical (coherent state) input field that
is uncorrelated with the intracavity field operator â(t), i.e.,
⟨F̂1(t)â(t ′)⟩ → 0, the external field spectrum is directly pro-
portional to the spectrum of the intracavity field fluctuations.
Therefore, the stationary leakage PL spectra can be computed
as

SLPL(ω) =
∫ ∞

0
dτ ⟨â†(τ )â(0)⟩ eiωτ , (49)

up to a proportionality factor that depends on the density of
states of the electromagnetic field. The dependence on the
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pump frequency enters in the intracavity field autocorrelation
dynamics, which we compute from the dissipative dynamics
of organic polaritons, together with the quantum regression
formula.

We show in Appendix D that the spectrum of the stationary
cavity fluctuations in Eq. (49) can be easily evaluated within
the NQJ approximation. The resulting expression for the LPL
spectra reads

SLPL(ω) =
∑

ij

ρj |⟨ϵi |â|ϵj ⟩|2
(0j /2)

(ω − ωji)2 + (0j /2)2
, (50)

where ρj is the steady-state population of the j th HTC
polariton eigenstate |ϵj ⟩, 0j is the polariton decay rate from
Eq. (39), and ωji = ϵj − ϵi > 0 is the transition frequency for
the optical transition |ϵj ⟩ → |ϵi⟩.

We compute the LPL emission spectra below by assuming
a stationary polariton population of the form ρj = 1/Mdj ,
where dj is the degeneracy of the j th HTC eigenvalue and M =∑

j dj is the number of polariton states considered. For a single
molecule dj = 1 for all j , but for N ! 2 this is not the case.

VI. ABSORPTION AND EMISSION
OF ORGANIC CAVITIES

We now apply the quantum formalism developed in the
previous sections to discuss the absorption and photolumi-
nescence spectroscopy of organic microcavities. Specifically,
we will use Eqs. (46), (48) and (50) to respectively evaluate
the conventional absorption spectrum, the bound absorption
spectrum and the leakage PL spectrum for several cases. We
discuss first the case of a single molecule in a cavity (N = 1),
then a molecular dimer (N = 2), and finally a molecular
ensemble with large N . For the ensemble case, we compare
the simulated emission spectra with experimental results from
the literature.

A. Single molecule

For a single emitter, the critical Rabi coupling for which
the zero-eigenvalue equation (30) can be solved is ! = 1.68 ωv
for λ2 = 1, at normal incidence (k∥ = 0). For this choice of
Rabi frequency, we show the polariton dispersion in Fig. 6(a).
The dispersion of the empty cavity mode ωc(k∥) is shown
for comparison (dashed line), where k∥ is the in-plane wave
vector of the cavity mode. For all values of k∥ shown, the HTC
polariton eigenstates have at least 10% photonic character.
The zero-energy dark vibronic polariton state |X⟩, which is
dispersive in our model, appears in the middle region between
the lower (LP) and upper (UP) polariton branches. A second
X-type polariton branch, which we denote as |X′⟩, occurs near
the upper polariton branch.

Figure 6(b) is a diagram of the allowed transitions from the
bottom of each of the polariton branches shown in Fig. 6(a), to
the lowest three vibrational states of the ground-state manifold.
Arrows indicate allowed transitions between polariton states
|ϵj ⟩, with frequencies ωj , and states in the ground manifold
|g,ν,0c⟩ having ν " 1 vibrational quanta. Upward arrows
are dipole allowed transitions, relevant in bound absorption
experiments [57,60]. The energy of the absolute ground state
|g,0,0c⟩ is denoted as ωg . Emission events are dissipative in

FIG. 6. Single molecule dispersion and allowed transitions.
(a) Polariton dispersion for Rabi coupling ! = 1.68 ωv. For all
considered in-plane wave vectors k∥, the polariton branches have
at least 10% photonic character. (b) Energy level diagram with the
arrows indicating allowed transitions from the bottom of the polariton
branches in panel (a). Transitions are denoted as Pν , from a polariton
state P = |ϵj ⟩ at frequency ωj , into a state of the ground manifold
with ν vibrational quanta |g,ν,0c⟩. Upward arrows are dipole allowed
transitions, relevant in bound absorption experiments, for ωg being
the absolute ground-state energy (vertical axes not on scale). In both
panels we set λ2 = 1. ωv is the intramolecular vibration frequency.

the sense that the material is projected into the state |g,ν,0c⟩
after photon loss through the cavity mirrors (leakage), which
can be represented by the mapping

â|ϵj ⟩ → |g,ν,0c⟩ + h̄ω. (51)

The radiated photon is detected at the frequency

ω = ωj − ν ωv, (52)

so that leakage photoluminescence maps the polariton dis-
persion ωj (k∥) only for vibrationless transitions (ν = 0). For
convenience, we denote downward transitions by Pν , where P
labels the emitting polariton state |ϵj ⟩ and ν is the number
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FIG. 7. Cavity absorption and emission for a single molecule
(N = 1). (a) Conventional absorption A = 1 − R − T (black line)
and bound absorption spectra (red line). The lower polariton (LP) and
upper polariton (UP) peaks are present in both types of absorption
signals. The zero-energy dark vibronic polariton |X⟩ is not present
in bound absorption. (b) Leakage photoluminescence spectra (LPL)
for the same parameters as in panel (a). Peak labels have the
form Pν , where P refers to the initial polariton state and ν to
the vibrational quantum number in the final state of the transition.
Dashed and solid lines include transitions with up to ν = 0 and ν = 1
vibrational quanta, respectively. Vertical bars indicate the position
and relative strength of the peak maxima. In both panels we set
! = 1.68 ωv, κ/ωv = 0.9, γe/ωv = 0.2, and a nonradiative decay
rate γnr/ωv = 0.1, for λ2 = 1 and ωc = ω00 at normal incidence. ωv

is the intramolecular vibration frequency.

of vibrational quanta in the ground manifold after photon
leakage. Dissipative transitions of the form Pν>0 are ignored
in existing quasiparticle theories of organic microcavities
[36–38,42,44,58].

We show in Fig. 7 the simulated absorption and leakage
PL emission spectra for a single molecule in a microcavity.
Such systems can now be realized experimentally using
localized plasmonic fields [56]. The bound absorption spectra
is computed from the dipole autocorrelation function as
discussed in Appendix D, assuming that only the absolute
ground state |G⟩ is populated [see Eq. (48)]. The lower
and upper polaritons form a well-defined bound absorption
doublet, for the transitions indicated with upper arrows in
Fig. 6(b). While the dipole oscillator strength is exactly zero
for the |X⟩ state, making it invisible in bound absorption, its
nonvanishing photonic component ⟨G|â|X⟩ gives a peak in
conventional absorption in Eq. (46).

The leakage photoluminescence (LPL) spectra, shown in
Fig. 7, illustrates the importance of dissipative transitions of
the form in Eq. (51) with ν ! 1. The spectrum is calculated as
described in Sec. V B. If we only take into account emission
events into the vibrationless ground state of the cavity (dashed

line) we obtain a photoluminescence spectra that roughly
maps the conventional absorption spectra A(ω) in terms of
its relative peak intensities. For example, the ratio between
the LP and X peaks in conventional absorption is similar to
their ratio in PL emission. However, if we include emission
processes that project the system into a state with up to
ν = 1 quantum of vibration, the emission peak near the bare
molecular frequency is enhanced relative the lower polariton
peak. Allowed transitions of this kind are shown in Fig. 6(b).

Leakage transitions from polariton eigenstates |ϵj ⟩ that
leave the material with ν ! 2 vibrational quanta are also
possible, and in general contribute to the strength of the
emission bands. In this work, we assume that only polaritons
that are slightly higher in energy than the conventional upper
polariton state are populated and can contribute to the LPL
spectra. Under the assumption of uniform polariton population
adopted here, photon leakage into a ground state with ν ! 2
quanta do not qualitatively change the emission spectra within
the conventional lower and upper polariton doublet. We
therefore omit those transitions from the discussion for clarity.
The situation is different when a more localized polariton
population is assumed [55]. In this case, emission at the lower
polariton frequency can be dominated by leakage transitions
with ν = 2 from two-particle polariton eigenstates in the
vicinity the upper polariton frequency, which is approximately
two vibrational quanta above the lower polariton state for√

N!/ωv ≈ 2.

B. Molecular dimer

The dimer (N = 2) is the simplest scenario where two-
particle states need to be taken into account in order to
describe the spectra. Single- and two-particle material and
polariton states are described in Sec. III. We first consider the
polariton dispersion for a dimer in two different Rabi coupling
regimes. For relatively small Rabi frequencies

√
N!/ωv ≪ 1,

polaritons that arise from the lowest vibronic transition of
the molecule (ν̃ = 0) have mostly single-particle character,
forming the usual lower and upper polariton branches. In
this Rabi coupling regime, two-particle states that originate
from higher vibronic bands also lead to polariton splitting at
normal incidence (k∥ = 0) [46]. We show the corresponding
polariton dispersion in Fig. 8(a), which displays the usual
anticrossings between vibronic transitions with ν̃ = 0 and
ν̃ = 1 vibrational quanta, with the vibrationless cavity photon
dispersion (dashed line). As we discussed in Sec. III, the
Holstein-Tavis-Cummings (HTC) model also allows the for-
mation of the two-particle polariton states |P ±

νν̃ ′ ,β⟩ [Eq. (24)]
at normal incidence, a fact largely ignored in previous works on
vibronic polaritons [44,58]. The polariton splittings associated
with two-particle polaritons are smaller than for conventional
(single-particle) lower and upper polariton splitting by a factor√

1 − (1/N ), due to the saturation nonlinearity involved in
vibronic-vibrational configurations (see Fig. 2). While for
large N ≫ 1, the difference between single- and two-particle
polariton splittings can be negligible, for small size systems
with N ∼ 1 [56], it may be possible to resolve the difference in
polariton splittings between single-particle and multiparticle
vibronic polaritons.

For Rabi frequencies closer to the critical value for the
formation of the zero-energy |X⟩ state, i.e.,

√
N!/ωv ≈ 2
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FIG. 8. Polariton dispersion for a dimer in a cavity (N = 2).
(a) Dispersion for Rabi coupling

√
N! = 0.4 ωv. The states P±

10 are
two-particle polaritons eigenstates in this regime. Arrows indicate
the location of an avoided crossing labeled by the pair of quantum
numbers (ν ν̃ ′), where ν refers to the vibrational quantum number of
the photon state and ν̃ to the material vibronic excitation involved
in polariton formation. The bare cavity dispersion is also shown
(dashed line). Polariton states with at least 10% photonic character are
shown with filled circles. Open circles indicate polariton states that
have predominantly material character. (b) Dispersion of the lowest
polariton states for Rabi coupling

√
N! = 2.0 ωv. We set λ2 = 1 in

both panels. ωv is the intramolecular vibration frequency.

(see Fig. 3), all eigenstates of the HTC model acquire a more
significant contribution from two-particle material states. We
show in Fig. 8(b) the polariton dispersion for this coupling
regime. At normal incidence, dark vibronic polaritons of the X
type (see Sec. III) are present in the middle region between the
conventional lower and upper polariton branches. We label the
dark vibronic polariton at zero energy by X, and the vibronic
polariton that is blue shifted from the bare electronic frequency
by Xb (ωXb ≈ 0.5 ωv). The spectrum also features additional
branches in the middle region between the conventional lower
and upper polariton states. These correspond to dark vibronic
polaritons of the Y type (Sec. III), and are labeled as Ya and
Yb. As discussed in Sec. III D, these states are dominated by
two-particle material states and can be weakly dispersive while
still having a significant photon character.

In Fig. 9, we show the computed absorption and leakage
photoluminescence (LPL) spectra for the bottom of the
polariton branches in Fig. 8(b). The conventional and bound
absorption spectra are qualitatively similar to the single
molecule case (Fig. 7), with both X-type dark vibronic polari-
tons being visible in conventional through-mirror absorption,
but only the state Xb being weakly visible in the bound
absorption spectra, due to an incomplete destructive interfer-
ence effect (Sec. III C). Unlike the single molecule case, the

FIG. 9. Cavity absorption and emission for a dimer in a cavity
(N = 2). (a) Conventional absorption A = 1 − R − T (black line)
and bound absorption spectra (red line). The lower polariton (LP) and
upper polariton (UP) peaks are present in both types of absorption
signals. The zero-energy dark vibronic polariton |X⟩ is not present
in bound absorption. (b) Leakage photoluminescence spectra (LPL)
for the same parameters as in panel (a). Peak notation follows Fig. 7.
Dashed and solid lines include transitions with up to ν = 0 and ν = 1
vibrational quanta, respectively, in the ground manifold. Vertical bars
indicate the position and relative strength of the peak maxima. In
both panels we set ! = 2.0 ωv, κ/ωv = 0.9, Nγe/ωv = 0.2, and a
nonradiative decay rate γnr/ωv = 0.1, for λ2 = 1 and ωc = ω00 at
normal incidence. ωv is the intramolecular vibration frequency.

LPL spectra for a dimer has a much richer structure when
considering photon leakage transitions from dark vibronic
polaritons of the Y type that leave the material with up to
ν = 1 vibrational excitation. Such Y states are invisible in both
types of absorption signals. Most notable is the appearance
of multiple emission peaks in the vicinity of the conventional
lower polariton peak (LP0), which results in a broad unresolved
structure for realistic linewidths. However, when considering
only vibrationless photon leakage transitions (ν = 0), the
LPL peak structure then simply resembles the conventional
absorption spectra.

C. Molecular ensembles

We finally consider the spectra of large molecular en-
sembles in a cavity, in an effort to provide insight on the
several reported features of the absorption and emission
spectra [4,15,39–41] for which quasiparticle theories [36–
38,42,44,58] do not offer a consistent interpretation. We
compute the dispersion for a system with N = 10 molecules
and the spectra for N = 20, which are representative values of
the large N limit [47].

As we discussed for the dimer case, in the weak coupling
regime, two-particle vibronic polaritons |P ±

νν̃,β⟩ are associated
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FIG. 10. Polariton dispersion for N = 10 molecules in a cavity
with Rabi coupling

√
N! = 0.4 ωv at normal incidence. The states

P±
νν̃ are two-particle polaritons eigenstates in this regime. Avoided

crossing are labeled by the pair of quantum numbers (ν ν̃ ′), where
ν refers to the vibrational quantum number of the photon state
and ν̃ to the material vibronic excitation involved in polariton
formation. The bare cavity dispersion is also shown (dashed line).
Polariton states with at least 10% photonic character are shown
with filled circles. Open circles indicate polariton states that have
predominantly material character. (b) Dispersion of the lowest
polariton states for Rabi coupling

√
N! = 2.4 ωv. We set λ2 = 1.

ωv is the intramolecular vibration frequency.

with Rabi splittings at frequencies greater or equal than one
vibrational quanta above the conventional lower polariton
splitting, as Fig. 10(a) shows. The ratio between the two-
particle Rabi splittings and the conventional lower and upper
polariton splitting differs from unity by a factor of order
1/N , which is negligible for large N . The two-particle
polariton branch labeled P −

10 in Fig. 10(a) becomes particularly
important for the interpretation of the emission spectra at larger
Rabi frequencies. The diabatic energy of the associated N -fold
degenerate two-particle polariton states |P −

10̃
,β⟩ [see Eq. (24)]

is in the vicinity of the bare electronic frequency (ωj = 0)
for Rabi couplings

√
N! ≈ 2 ωv, and can therefore admix

with single-particle diabatic material states |β,0̃,0c⟩, which is
also in that frequency region, forming a set of dark vibronic
polaritons of the Y type for β ̸= α0. These dark states are
(N − 1)-fold degenerate, and have a significant ν = 1 photonic
component. Photon leakage through the mirrors would thus
produce light near the conventional lower polariton frequency
ωLP, which is roughly one quantum of vibration below the bare
molecular frequency for the values of

√
N! and λ2. Moreover,

contributions from the two-particle diabatic polariton state
labeled P −

20̃
in Fig. 10(a) would admix with the conventional

(single-particle) upper polariton state for large Rabi couplings
to produce a set of Y -type dark vibronic polaritons at a

FIG. 11. Cavity absorption and emission for a microcavity with
N = 20 emitters. (a) Conventional absorption A = 1 − R − T (black
line) and bound absorption spectra (red line). (b) Normal incidence
LPL spectra including transitions with up to ν = 0 and ν = 1
vibrational quanta in the ground manifold, shown in dashed and
solid lines, respectively. Vertical bars indicate the position and
relative strength of the peak maxima. We set

√
N! = 2.4 ωv, λ2 = 1,

κ/ωv = 0.9, and Nγe/ωv = 3.0. ωv is the intramolecular vibration
frequency. (c) Experimental LPL spectra obtained by Hobson et al.
[4], for cyanine dye J aggregates in a low-Q microcavity (with
permission). The cavity was pumped with a narrow continuous-wave
laser at 2.08 eV.

frequency ωj ≈ ωv, near the conventional upper polariton
frequency. The structure of dark vibronic polaritons of the
Y type is discussed in Sec. III.

As the polariton dispersion in Fig. 10(b) shows, for Rabi
couplings

√
N! ≈ 2 ωv there are several Y -type dark vibronic

polaritons deriving from |P −
20̃

,β⟩ that have energies near the
upper polariton (ωj ≈ ωv). Figure 11(a) shows that dark
vibronic polariton states of the Y type are invisible in both
types of absorption spectra, as for the dimer case. Such Y
states can nevertheless contribute to photoluminescence peak
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near the conventional lower polariton frequency (ωj ≈ −ωv),
when the system is projected into a state with two vibrational
quanta upon photon leakage, and also to the peak near the
bare electronic frequency (ωj ≈ 0) when emitting light that
leaves the system with one quantum of vibration. Similarly,
dark vibronic polaritons of the X and Y types near the bare
electronic frequency, i.e., branches labeled Ya, X, Yb, and Xb
in Fig. 10(b), also contribute to PL emission near the lower
polariton frequency, when projecting the system into a state
with one vibrational excitation.

Figure 10(b) also shows that there are multiple polariton
branches near the upper polariton branch in the range of
frequencies ωj /ωv ≈ 0.9–1.4. These include dark vibronic
polaritons of the Y type with a photonic component having
both ν = 1 and ν = 2 vibrational quanta. For numerical
convenience, we only take into account leakage transitions
that leave the system with one quantum of vibration in the
computed photoluminescence spectra. Under the assumption
of uniformly populated polaritons assumed here for the
evaluation of the emission spectra, photon leakage transitions
into states with ν = 2 vibrational quanta do not qualitatively
change the spectral shape. However, for a nonuniform po-
lariton populations like the one produced by a narrow laser
pulse, transitions involving ν = 2 vibrational quanta in the
ground manifold should be taken into account in order to obtain
qualitative agreement with pump-probe experiments [55].

We show in Fig. 11(b) the calculated photoluminescence
spectra (LPL) for a choice of Hamiltonian and dissipative
model parameters that are representative of molecular en-
sembles in typical organic cavities. The results should be
compared with the experimental PL spectra in Fig. 11(c),
obtained by Hobson et al. [4] for an ensemble of cyanine dye J
aggregates in a metallic microcavity at room temperature. The
model calculation qualitatively reproduces the main observed
emission features, with no fitting involved. The results are also
consistent with other recent measurements on a different type
of J aggregate (TDBC) [41]. Similar to the single-molecule
and dimer cases, if we ignore emission from Y -type dark vi-
bronic polaritons that leave the material with ν ! 1 vibrational
quanta upon photon leakage, the relative peak strengths differ
significantly from the experimentally observed ratios.

We also note the relative simplicity of the spectra for large
N relative to the dimer case. The multiple emission lines near
the lower polariton frequency ωLP in Fig. 9, for the dimer
case, merge into a single broad emission band whose peak
maximum is blue-shifted relative to ωLP for an ensemble. For
the chosen model parameters, the shift is due to emission from
the (N − 1)-fold degenerate dark vibronic polariton labeled Yb
in Fig. 10(b). For N = 20 this state has energy ωY = 0.148 ωv,
and can emit light with frequency ωY − ωv ≈ −0.85 ωv upon
mirror leakage, which is blue shifted from the lower polariton
frequency ωLP by δLP = 0.12 ωv. This value of δLP corresponds
to 20 meV for a vinyl stretch (ωv = 180 meV [51]). Shifts of
this magnitude have been recently measured [41].

VII. CONCLUSIONS

In this work, we have developed a theoretical framework
to describe the spectroscopy of organic microcavities based
on the recently introduced Holstein-Tavis-Cummings model

[33,46,49], and a Lindblad description of the dissipative
dynamics of organic polaritons. The model provides a mi-
croscopic interpretation for several observed features in the
absorption and emission spectra of organic microcavities in the
vicinity of the spectral region associated with bare molecular
transitions. Several experimental features are given a consis-
tent interpretation here. We do this by introducing the concept
of dark vibronic polaritons, a class of light-matter excitations
that have no dipole oscillator strength, making them invisible in
direct bound mode absorption [60,69], but which nevertheless
have strong emission signatures in photoluminescence.

The proposed interpretation of the organic cavity spectra
does not depend qualitatively on our choice of Hamiltonian
parameters within the range of Rabi frequencies shown in
Fig. 3, roughly defined by the Rabi coupling being twice the
intramolecular vibration frequency. We refer to this range
of Rabi frequencies as an intermediate coupling regime,
to distinguish it from the much stronger regime described
in previous work [33], where molecular vibrations become
separable from the electronic and photonic degrees of freedom.
In the intermediate coupling regime discussed here, vibrations,
electrons, and photons are fully entangled and form two types
of dark vibronic polaritons, which we call of the X and
Y types. The set of X-type polaritons are dark in dipole
absorption mostly due to destructive interference effects,
and the set of Y -type polaritons are completely invisible in
dipole absorption because they contain single- and two-particle
material components that have no transition dipole moment
with the absolute ground state of the system (no electronic,
vibrational, or cavity excitation).

As an application of the introduced theoretical framework,
we interpret the photoluminescence spectra of organic cavities.
This type of observable can be divided into frequency compo-
nents associated with photon leakage transitions that leave the
material with ν ! 0 vibrational excitations. Therefore, within
the homogeneous model considered in this work, emission
near the lower polariton frequency can be due to direct
radiative transitions (photon leakage) from polariton states at
higher energies that leave the material with ν ! 1 vibrational
quanta. Nonradiative relaxation is thus not the only mechanism
that can account for the observed emission enhancements at
the lower polariton frequency, under off-resonant pumping
[41,70]. For large molecular ensembles in metallic cavities, we
expect subpicosecond radiative relaxation to be the dominant
polariton decay channel, due to a predicted size-enhanced
fluorescence rate into bound modes of the nanostructure, and
the short photon lifetime of low-Q microcavities [4].

In the parameter regime where dark vibronic polaritons
form near of the bare molecular transition (

√
N! ≈ 2 ωv),

material states that are commonly considered to be uncoupled
from the cavity field (dark excitons) can borrow an appreciable
photonic component from higher energy two-particle diabatic
vibronic polaritons. In other words, there are no collective
material states that remain uncoupled from the cavity field.
Eventually, as the Rabi coupling increases far beyond the
threshold for polaron decoupling [33], the cavity spectra is
expected to simplify. The study of the spectral changes in
absorption and emission as the cavity transitions from the
regime of dark vibronic polariton formation to the polaron
decoupling regime is currently underway.
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Possible experimental tests of the predicted photophysics
of organic microcavities can include a comparison between
polariton photoluminescence into bound modes of the nanos-
tructure versus the conventional leakage photoluminescence
into free space. If the external pump field is only slightly blue
detuned relative to the lower polariton frequency, then dark
vibronic polaritons are not populated and their effects on emis-
sion can be suppressed [55]. We find that the ratio between the
vibrationless emission peak from (0-0) and the first vibronic
sideband (0-1), associated with a transition from the lower po-
lariton into the ground electronic manifold with one quantum
of vibration, is different when measured via leakage photolu-
minescence in comparison with bound photoluminescence. In-
terestingly, only the bound mode 0-0/0-1 ratio is indicative of
cavity-induced coherence length in the ensemble [46], resem-
bling the behavior of molecular aggregates in free space [71].

In summary, we have demonstrated that a simple ho-
mogeneous treatment of the system with purely radiative
relaxation can qualitatively describe several observed features
of the spectroscopy of organic microcavities. More quantitative
comparisons would require further extensions of the model,
in order to account for long-range electrostatic coupling
between emitters, strong energetic disorder, multimode cav-
ity couplings, and more general radiative and nonradiative
reservoirs. The model can be further extended to describe
microcavities in the ultrastrong coupling regime [11,12,16]
having arbitrary mode dispersion. Our work thus paves the
way for the development of novel nonlinear optical devices
[21,27,29,30], chemical reactors [31,33], and optoelectronic
devices [23–26] that can be enhanced by quantum optics.
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APPENDIX A: SYMMETRY OF THE HTC MODEL

Here we prove that

e−iŜ ĤLMeiŜ = ĤLM. (A1)

In order to do so, it is sufficient to show that the commutator
[Ŝ,ĤLM ] vanishes. Using the definitions in Eqs. (2) and (3),
we can write this commutator as

[Ŝ,ĤLM ]

= 1
2

∑

νν ′

[(−1)−ν!νν̃ ′ − (−1)ν
′
!ν̃ν ′ ]|e ν̃ 0c⟩⟨e ν̃ ′ 0c|

+ 1
2

∑

νν ′

[(−1)−ν ′
!ν̃ ′ν − (−1)ν!ν ′ ν̃]|g ν ′ 1c⟩⟨g ν 1c|.

(A2)

We use the following symmetry property of Frank-Condon
factors under the exchange of vibrational indices [59]

⟨ν ′|ν̃⟩ = (−1)ν−ν ′ ⟨ν|ν̃ ′⟩ (A3)

to show that the square brackets in the first and second lines
of Eq. (A2) can be rewritten to give

(−1)−ν!νν̃ ′ − (−1)ν
′
!ν̃ν ′ = (−1)ν[!νν̃ ′ − !ν̃ ′ν] = 0 (A4)

and

(−1)−ν ′
!ν̃ ′ν − (−1)ν!ν ′ ν̃ = (−1)ν

′
[!ν̃ ′ν − !νν̃ ′ ] = 0, (A5)

which proves the desired commutation property.

APPENDIX B: PROOF THAT ⟨G|µ̂|X⟩ = 0

In this section we prove that a zero-energy vibronic
polariton eigenstate of the HTC Hamiltonian Ĥ [Eq. (1)], in
a frame rotating at the cavity frequency ωc, has no dipole
oscillator strength for transitions from the absolute ground
state of the cavity |G⟩ ≡ |g1 01,g2 02, . . . ,gN 0N ⟩|0c⟩.

We write the transition dipole operator as µ̂ = µ̂(+) + µ̂(−),
where µ̂(+) = µ

∑
n |gn⟩⟨en| and µ̂(−) = [µ̂(+)]†, with µ being

the single-particle transition dipole moment. Denoting as |X⟩
the vibronic polariton eigenstate with zero eigenvalue in the
cavity frame, we have

Ĥ|X⟩ = (ĤM + ĤLM)|X⟩ = 0, (B1)

where in the second line we express the HTC Hamiltonian as
a sum of a material term ĤM and a light-matter coupling term
ĤLM. The free cavity term ωcâ

†â is eliminated by transforming
to a frame rotating at the cavity frequency ωc [59].

The material (Holstein) Hamiltonian can be written as

ĤM =
∑

n

ĥn
vib + ĥn

vib(λ)|en⟩⟨en|, (B2)

with ĥn
vib being the reference (unshifted) vibrational Hamil-

tonian and ĥn
vib(λ) being the displaced vibrational Hamil-

tonian in the excited electronic state. Therefore, left-
multiplying Eq. (B2) by the state ⟨G|â we obtain ⟨G|âĤM =
⟨G|â(

∑
n ĥn

vib) = 0, since there are no vibrational excitations
in |G⟩. When we now left-multiply Eq. (B1) by ⟨G|â, the
light-matter term gives

⟨g1 01,g2 02, . . . ,gN 0N |⟨1c|
∑

n

{|gn⟩⟨en|â†

+ |en⟩⟨gn|â}|X⟩ = 0. (B3)

Only the first term in the curly bracket contributes to the left-
hand side of this equality, giving

⟨G|µ̂(+)|X⟩ = 0. (B4)

This expression gives the desired result ⟨G|µ̂|X⟩ = 0, by
noting that ⟨G|µ̂(−) = 0.

APPENDIX C: INPUT-OUTPUT RELATIONS

We review here the input-output theory for transmission
and reflection spectra of a two-sided planar cavity. We
follow the so-called quasimode approximation, in which
orthogonal degrees of freedom inside and outside the cavity
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are defined, these being weakly coupled to each other via
finite transmission through the cavity mirrors [61,72]. The
formalism is an alternative to the field quantization approach
based on the classical Green’s function of the problem [73].
We follow the Schrodinger picture approach from Carmichael
et al. [61], which differs the Heisenberg picture approach from
Collet and Gardiner [74,75] in that no time-reversed solutions
are invoked.

The dynamics of an empty cavity coupled to the electro-
magnetic reservoirs at each external side of the cavity mirrors
is given by the Hamiltonian Ĥ = ĤS + ĤR + ĤSR , where

ĤS =
∑

β

ωβ â
†
β âβ ,

ĤR =
∑

iβ

∫ ∞

0
dω ω[l̂†iβ(ω)l̂iβ(ω) + r̂

†
iβ(ω)r̂iβ(ω)],

ĤSR =
∑

iβ

∫ ∞

0
dω κ∗

i (ω) âβ[l̂†iβ(ω) + r̂
†
iβ(ω)] + H.c.,

(C1)

where the operators l̂iβ(ω) and r̂iβ(ω) are continuous reser-
voir field operators that annihilate a free-space photon with
frequency ω and in-plane wave vector β propagating to the
left and to the right relative to the cavity axis, on regions i = 1
(left side of cavity) and region i = 2 (right side). We implicitly
assumed that all fields involved have transverse electric (TE)
polarization êβ and only the lowest TE cavity mode is taken
into account. We have also used the fact that transmission
through the cavity mirror preserves the in-plane wave vector β
of the field away from the mirror edges. Since the cavity length
L is subwavelength, higher order TE modes with are far de-
tuned from the electronic transition frequencies of interest. The
system-reservoir couplings κi(ω) determine the cavity decay
rate at each mirror, as we show below. The reservoir operators
satisfy the equal-time commutation relations of the form

[l̂iβ(ω),l̂†kβ ′(ω′)] = [r̂iβ(ω),r̂†kβ ′ (ω′)] = δikδ(ω − ω′),

[l̂iβ,r̂
†
kβ ′] = [âβ ,r̂

†
kβ ′] = [âβ ,l̂

†
kβ ′ ] = 0. (C2)

Cavity and reservoir operators evaluated at different times do
not necessarily commute.

We can avoid referring to the electric field normalization
outside the cavity by defining the electric field operator in units
of photon flux for ith region Ê (+)

i (x,t) =
∑

β eiβ·x∥ Êiβ(z,t),
with

√
2π Ê (+)

iβ (z,t) =
∫ ∞

0
dω l̂iβ(ω,t)e−iωζi (z)/c

+
∫ ∞

0
dω r̂iβ(ω,t)eiωζi (z)/c, (C3)

where ζ1(z) ≡ z cos θ1 < 0 is the projected wavefront distance
relative to the z axis (cavity axis) with θ1 being the incidence
angle in region 1. For region 2 we have the scaled position
ζ2(z) ≡ (z − L) cos θ2 > 0, where θ2 is the incidence angle
relative to the cavity axis. In what follows, we evaluate
the frequency integrals by writing ω = ωβ + $, where $ is
the detuning from the cavity resonance frequency ωβ . The

resulting expressions are simplified when written in terms of
rotating-frame operators defined as Ã(t) ≡ Â(t)eiωβ t .

The Heisenberg equations of motion for the rotating-frame
operators l̃iβ($,t) and r̃iβ($,t) in each region can be formally
solved to read

l̃iβ(t) = l̃iβ(0)e−i$t − iκ∗
i ($)

∫ t

0
dt ′ e−i$(t−t ′)ãβ(t ′),

r̃iβ(t) = r̃iβ(0)e−i$t − iκ∗
i ($)

∫ t

0
dt ′ e−i$(t−t ′)ãβ(t ′), (C4)

where we have omitted for simplicity the frequency depen-
dence of the reservoir operators. These formal solutions are
then inserted into the rotating-frame version of Eq. (C3) to
obtain a field of the form

Ê (+)
iβ = Ê (+)

iβL + Ê (+)
iβR + Ê (+)

iβS, (C5)

where

Ê (+)
iβL(z,t) = e−iωβ (t+ζi /c)

∫
d$√

2π
l̃iβ($,0)e−i$(t+ζi /c), (C6)

and

Ê (+)
iβR(z,t) = e−iωβ (t−ζi /c)

∫
d$√

2π
r̃iβ($,0)e−i$(t−ζi /c) (C7)

are free fields propagating to the left and to the right along the
z axis, respectively. As expected for free fields, these expres-
sions give [Ê (+)

iβL(z,t),Ê (−)
iβL(z,t ′)] = [Ê (+)

iβR(z,t),Ê (−)
iβR(z,t ′)] =

δ(t − t ′). The reservoir operators l̃iβ($) and r̃iβ($) evaluated
at t = 0, become input field operators in the formalism by
Collet and Gardiner [74]. The total field Ê (+)

iβ also has a source
contribution that depends on the intracavity field and can be
written as
√

2π Ê (+)
iβS(z,t)

= −ie−iωβ (t+ζi /c)
∫

d$ κ∗
i ($)

∫ t

0
dt ′ e−i$(t−t ′+ζi /c)ãβ(t ′)

− i e−iωβ (t−ζi /c)
∫

d$ κ∗
i ($)

∫ t

0
dt ′ e−i$(t−t ′−ζi /c)ãβ(t ′).

(C8)

Causality ensures that either on the left or right side of the
cavity, only one term in Eq. (C8) contributes to the source
field. Physically, it is not possible for a right-propagating
field far to the left cavity mirror (ζ1 → −∞), for example, to
depend on the intracavity field operator ãβ because it has yet
to reach the mirror. Therefore its contribution to the source
field Ê (+)

iβS must vanish. The left-propagating contribution
at the same distant location can, however, depend on the
intracavity field after reflection at the left cavity mirror. Such
causal behavior is obtained in a simple form by assuming a
frequency-independent coupling of the form κi(ω) ≈ κi(ωβ)
over the frequency range ωβ − δc < ω < ωβ + δc, where δc is
a cutoff frequency, which gives κi($) = κi(0) in the rotating
frame of the cavity mode. The frequency integrals in Eq. (C8)
can be easily evaluated by setting δc → ∞. The source field
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in region 1 (ζ1 < 0) thus reads

Ê (+)
1βS(z,t) = −i

√
2π κ∗

1 (0)

×
[
e−iωβ (t+ζ1/c)

∫ t

0
dt ′ãβ(t ′)δ(t + ζ1/c − t ′)

+ e−iωβ (t−ζ1/c)
∫ t

0
dt ′ãβ(t ′)δ(t − ζ1/c − t ′)

]
.

(C9)

The second time integration (right-propagating wave) vanishes
because the peak of the δ function lies outside the integration
range (0,t) for ζ1 " 0. Only the left-propagating contribution
survives, giving the source field

Ê (+)
1βS(z,t) = −ie−iωβ (t+ζ1/c)

√
2π κ∗

1 (0) ãβ(t − |ζ1|/c),

(C10)

which depends on the intracavity field evaluated at the retarded
time t − |ζ1|/c, as expected from causality. We made the
change of variable τ = t + ζ1/c − t ′ in evaluating the time
integral. The source contribution in region 2 (ζ2 ! 0) can be
obtained in an analogous way to give

Ê (+)
2βS(z,t) = −ie−iωβ (t−ζ2/c)

√
2π κ∗

2 (0) ãβ (t − ζ2/c). (C11)

The coupling constants κi(0) evaluated at the cavity
resonance frequency ωβ are related to the damping rates
γi that determine the cavity linewidth [61]. Starting from
the Heisenberg equation of motion for the slowly-varying
amplitude

d

dt
ãβ = −i

∑

i

∫ ∞

−∞
d$ κi($)[l̂iβ($,t) + r̂iβ($,t)], (C12)

after inserting the formal solutions from Eq. (C4), we arrive at
the Langevin equation

d

dt
ãβ = −

∫ t

0
dt ′ [K1(t − t ′) + K2(t − t ′)]ãβ(t ′)

+ L̂1β (t) + R̂1β(t) + L̂2β(t) + R̂1β(t), (C13)

with dissipation kernel

Ki(t − t ′) =
∫ ∞

−∞
d$ |κi($)|2e−i$(t−t ′), (C14)

and source operators

L̂iβ(t) = −i

∫ ∞

−∞
d$ κi($)l̃iβ($,0)e−i$t (C15)

R̂iβ(t) = −i

∫ ∞

−∞
d$ κi($)r̃iβ($,0)e−i$t . (C16)

These are determined by the input reservoir operators l̃iβ($)
and r̃iβ($) at each side of the cavity. In the Markovian
approximation for the cavity-mirror coupling, the dissipation
kernels become Ki(t − t ′) = (2π )|κi(0)|2δ(t − t ′). Setting

γi = 2π |κi(0)|2, (C17)

and using the relation
∫ t

0 dτf (τ )δ(τ ) = f (0)/2 to integrate the
time kernels, gives a time-local equation of motion

d

dt
ãβ(t) = −(γ /2) ãβ(t) + √

γ1 F̃1β(t) + √
γ2 F̃2β(t),

(C18)

where γ = (γ1 + γ2) is the cavity decay rate, and the Langevin
noise operators are given by

F̃iβ(t) = − i√
2π

eiφi

∫
d$ [l̃iβ($,0) + r̃iβ($,0)]e−i$t ,

(C19)

where we have defined the phase φi as κi(0) = |κi(0)|eiφi . It
is well known that the Langevin equation in Eq. (C18) can
be rewritten for coherent input fields as the Lindblad quantum
master equation [61]

˙̂ρ = −i[ĤS,ρ̂] + γ
(
âβ ρ̂â

†
β − 1

2 {â†
β âβ ,ρ̂}

)
, (C20)

where ρ̂ is intracavity photon reduced density matrix and the
curly brackets denote an anticommutator. The Langevin noise
operators Fiβ(t) are represented by a near-resonant driving
Hamiltonian term, such that the intracavity Hamiltonian reads

ĤS = ωβ â
†
β âβ + E∗

1 âβe−i$β t + E1â
†
βei$β t , (C21)

where E1 = √
γ1β1 is the driving strength corresponding to an

input coherent state with complex amplitude β1 on mirror 1,
detuned from the cavity resonance by $β , assuming driving
on region 1 only.

Transmission and reflection experiments measure the spec-
trum of the external electric field Ê (+)

i (x,t) for a given in-plane
momentum β at a fixed position x = xi . For driving on region
1, the reflection spectra R(ω) is determined by the Fourier
transform of the normalized first-order correlation function
[77]

g
(1)
1 (t,τ ) =

⟨Ê (−)
1β (t + τ )Ê (+)

1β (t)⟩
⟨Ê (−)

1β (t)Ê (+)
1β (t)⟩

. (C22)

The transmission spectra T (ω) would be proportional to the
Fourier transform of the field correlation function ⟨Ê (−)

2β (t +
τ )Ê (−)

2β (t)⟩, corresponding to region 2.
The field expansion introduced in Eq. (C5) shows that in

general the output spectrum [either R(ω) of T (ω)] depends
on the correlations between the reservoir and intracavity
field operators. However, these can be neglected at optical
frequencies for thermal reservoirs [61], giving the stationary
correlation function (τ > 0)

g
(1)
i (t,τ ) ≈

[⟨Ê (−)
iβL(t + τ )Ê (+)

iβL(t)⟩ + ⟨Ê (−)
iβR(t + τ )Ê (+)

iβR(t)⟩]
⟨Ê (−)

iβ (t)Ê (+)
iβ (t)⟩

+
πγi ⟨ã†

β (t + τ )ãβ(t)⟩
⟨Ê (−)

iβ (t)Ê (+)
iβ (t)⟩

. (C23)

The steady-state spectrum is obtained by taking the limit
t → ∞ in Eq. (C22). Therefore, once the input field spectrum
is known (driving laser), the stationary transmission and
reflection spectra are completely determined by the intracavity
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two-time correlation function ⟨ã†
β (t + τ )ãβ(t)⟩, which can be

evaluated from the Lindblad master equation or Langevin
equation for the system evolution, together with the quantum
regression theorem [61].

1. Transmission and reflection

Before discussing light absorption by a molecular medium
embedded in the cavity, let us consider a two-mirror cavity
driven by a stationary coherent input field with (complex)
amplitude ⟨F̂1β⟩ ̸= 0 on region 1, i.e., ⟨F̂2β⟩ = 0 in Eq. (C18).
The steady-state amplitude of the intracavity field is thus

⟨aβ⟩ss = −
2
√

γ1

γ
⟨F̂1β⟩. (C24)

From Eqs. (C6), (C7), (C10), and (C19), we can write the
electric field flux amplitude at the reflecting mirror (ζ1 = 0) as

|⟨Ê (+)
1β ⟩| = |⟨F̂1β⟩|

(
1 − 2γ1

γ

)
= |⟨F̂1β⟩|

(
γ2 − γ1

γ2 + γ1

)
. (C25)

A similar calculation for the electric field amplitude at the
transmitting mirror (ζ2 = 0) gives

|⟨Ê (+)
2β ⟩| = |⟨F̂1β⟩|

√
γ1γ2

γ1 + γ2
. (C26)

These expressions simply state the fact that for identical
mirrors (γ1 = γ2), the reflected field vanishes and the cavity
acts as a perfect transmission filter, which is known from
classical interferometry [76]. Since there is no absorption in
the cavity, conservation of photon flux can be stated as

|⟨Ê (+)
1β ⟩|2 + |⟨Ê (+)

2β ⟩|2 = |⟨F̂1β⟩|2. (C27)

Normalizing the reflected and transmitted fluxes by the input
photon flux results in the identity

R + T = 1,

where R and T are the reflectivity and transmittivity of the
cavity at a given input frequency.

2. Cavity absorption

Let us now consider a molecular medium embedded in
a two-side cavity. The interaction between the molecular
transition dipole moment operator of the nth molecule in
the ensemble µ̂n and the local electric field operator Ê(xn)
is represented, ignoring a global phase, by the interaction term

ĤI =
∑

n

µ̂n Ê(xn) =
∑

n

µ̂(−)
n Ê (+)(xn) + H.c., (C28)

where in the second equality we use µ̂ = µ̂(+) + µ̂(−) and
adopted the rotating-wave approximation (RWA) [77]. The
local electric field at the molecular position xn is given by
superposition of multiple field modes of the microcavity. The
field modes whose in-plane wave vector β does not exceed
the cutoff for total internal reflection are able to leak out
of the nanostructure through the mirrors. These so-called
radiative modes are involved in transmission and reflection
measurements [4]. The dynamics of the radiative modes is
determined by the field operator âβ , which satisfies Eq. (C18)
for an empty cavity.

For those field modes whose in-plane wave vector exceed
the cutoff for total internal reflection, photons are unable to
leak through the mirrors and remain bound to the intracavity
space. Bound modes are mostly confined to the bulk of the
dielectric medium or at the mirror-dielectric interface and
represent a decay channel for molecular electronic transitions
that can reduce the efficiency of light-emitting devices [60].
The degree in which a bound mode is either bulk or a surface
mode depends on the field polarization and the distance
between the mirrors [65]. We use the operator b̂β ′(ω) to
represent a bound mode with in-plane wave vector β ′, and
write the local intracavity (positive frequency) electric field as
the superposition

Ê (+)(xn) = Ê (+)
a (xn) + Ê (+)

b (xn),

where Ê (+)
a (xn) is the contribution to the electric field from

radiative modes, and Ê (+)
b (xn) the contribution from bound

modes. We treat radiative and bound modes differently in our
model. We include only the radiative modes as part of the
Holstein-Tavis-Cummings (HTC) Hamiltonian, which reads

Ĥ = ĤC + ĤM + V̂a, (C29)

where ĤC is the free cavity Hamiltonian from Eq. (C1),
ĤM is the Holstein Hamiltonian involving electronic and
vibrational degrees of freedom of the material, and V̂a =∑

n[µ̂(−)
n Ê (+)

a (xn) + H.c.] is the cavity-matter coupling. The
bound modes are considered as a zero-temperature electromag-
netic reservoir that induces dissipation of the molecular dipoles
via spontaneous emission. Expanding the bound electric field
as

√
2π Ê (+)

b (x) =
∑

β ′

∫ ∞

0
dω b̂β ′(ω)eiβ ′·x, (C30)

gives an effective system-reservoir coupling Hamiltonian of
the form

ĤSR =
∑

n

∑

β ′

∫ ∞

0
dω g(ω) σ̂−

n b̂β ′(ω) eiβ ′·xn + H.c.,

(C31)
where σ̂−

n = µ̂(+)
n /µ is the electronic transition operator of the

nth molecule, µ is the transition dipole moment, and g(ω) is a
coupling function. It is well known [61,63,77] that this system-
reservoir interaction in the Born-Markov approximation gives
a Lindblad quantum master equation for the system density
matrix ρ̂ of the form

d

dt
ρ̂(t) = −i[Ĥ,ρ̂(t)] + La[ρ̂(t)] + Lµ[ρ̂(t)], (C32)

where H is the HTC Hamiltonian in Eq. (C29), La[ρ̂(t)] is the
cavity photon Lindblad dissipator given by the second term in
Eq. (C20), andLµ[ρ̂(t)] is the dissipator associated with dipole
radiative decay into bound modes, which can be written as

Lµ[ρ̂(t)] =
∑

n

γn

(
σ̂−

n ρ̂(t)σ̂+
n − 1

2
{σ̂+

n σ̂−
n ,ρ̂(t)}

)
, (C33)

where γn is single-emitter decay rate γn.
We can follow a derivation to the one described above for

an empty cavity and formally solve the Heisenberg equation
of motion for the slowly varying variable b̃β ′ ($,t), where $
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is a small detuning of the bound mode frequency ωβ ′ from
the empty cavity frequency ωβ . We use this formal solution to
write the bound electric field amplitude as

Ê (+)
b (x,t) = −i

∑

n,β ′

ei[β ′·(x−xn)−ωβ′ t]

×
∫

d$√
2π

g∗($)
∫ t

0
dt ′ e−i$(t−t ′) σ̃−

n (t ′).

(C34)

We neglect the free field contribution to Ê (+)
b because its mean

amplitude vanishes for a zero-temperature electromagnetic
reservoir, i.e., ⟨b̃β ′($,0)⟩ = 0, and its contribution to the field
second moments is separable [61]. The bound field is thus
determined by a sum over dipole sources, and its dynamics is
given by the evolution of the slowly varying transition operator
J̃ (+)

n (t). Assuming g($) ≈ g(0) and that |x − xn| ≈ |x| in the
far field, we obtain

Ê (+)
b (x,t) = −i

√
2π g∗(0)

∑

β ′

∑

n

σ̃−
n (t − |x|/c) e−i(ωβ′ t−β ′·x).

(C35)
The fluorescence spectrum associated with spontaneously
emitted light into bound modes by the molecules in the
ensemble is thus determined by the Fourier transform of the
first-order correlation function

g
(1)
b (t,τ ) = ⟨Ê (−)

b (x,t + τ )Ê (+)
b (x,t)⟩

⟨Ê (−)
b (x,t)Ê (+)

b (x,t)⟩
, (C36)

which can be evaluated from the evolution of the dipole
coherence

∑
n⟨σ−

n (t)⟩, together with the quantum regression
theorem [61]. For simplicity, we assume that two-point dipole
correlations of the form ⟨σ+

n (τ )σ−
m (0)⟩ are negligibly small for

the time scales of interest, which is consistent with the local
decay approximation assumed in Eq. (C33).

We finally relate the adopted cavity QED approach to cavity
emission [61] with the usual definition of cavity absorption
A(ω) in semiconductor microcavities. The microcavity is
assumed to be driven with a continuous wave coherent field
of frequency ωp, on the external side of one of the mirrors
(region 1). For simplicity of notation, we assume driving
at normal incidence (β = 0). The photon flux (in Hz) of
the driving field given by |⟨F̂1⟩|2. In the absence of dipole
decay, radiative or nonradiative, the reflected and transmitted
photon fluxes, |⟨Ê (+)

1 ⟩|2 and |⟨Ê (+)
2 ⟩|2, respectively, should

satisfy Eq. (C27) for any ωp, which gives R(ωp) + T (ωp) = 1
for the normalized reflection and transmission spectra. The
coherent cavity-matter coupling V̂a in Eq. (C29) does not alter
this relation, but simply leads to a Rabi splitting in the strong
coupling regime. In a more realistic scenario, where molecular
dipoles decay radiatively into bound modes of the microcavity
structure, conservation of photon flux can be stated as

|⟨Ê (+)
1 ⟩|2 + |⟨Ê (+)

2 ⟩|2 + |⟨Ê (+)
b ⟩|2 = |⟨F̂1⟩|2, (C37)

for any given ωp. We have implicitly assumed that all bound-
mode fluorescence is collected in the far field. Normalizing
the above equality by the input flux gives the usual definition
the cavity absorption spectra

A = 1 − R − T . (C38)

We thus show that the absorbed photon flux A(ωp) at the
driving frequency ωp is determined by the normalized bound
fluorescence intensity. In physical terms, fluorescence into
bound modes of the microcavity attenuates the transmission
and reflection of a driving laser. More generally, any process
that leads to dipole decay, such as nonradiative molecular
relaxation, would contribute to such field attenuation and
contribute to the absorption spectra. However, we expect
radiative relaxation to occur at a rate on the order of

√
Nγe

due to the collective character of the electronic degrees of
freedom in the strong cavity-matter coupling regime. Such
size enhancements of the bound fluorescence rate may reduce
the contribution of nonradiative processes to absorption.

APPENDIX D: SPECTRUM OF POLARITON
FLUCTUATIONS

We derive here a general formula to compute two-time
autocorrelations of the form

⟨Ô1(t + τ )Ô2(t)⟩,

as needed in the computation of the leakage photolumines-
cence (LPL) of weakly driven cavities. The starting point of
the derivation is the quantum regression formula [61,63]

⟨Ô1(t + τ )Ô2(t)⟩ = TrS{Ô1(0)eLτ [Ô2(0)ρ̂(t)]}, (D1)

where ρ̂(t) is the reduced density matrix of the system (organic
cavity) that evolves according to ρ̂(t) = eLt ρ̂(0), where ρ̂(0)
is the initial state of the system and L is the Liouville
superoperator [61,63]. Using regression formula [Eq. (D1)]
thus involves solving the master equation twice, first with
respect to the absolute time t , starting from the initial condition
ρ̂(0) in order to obtain the evolved state ρ̂(t), and then solving

d

dτ
σ̂t (τ ) = L σ̂t (τ ), (D2)

with respect to the delay time τ . This τ -dependent equation
has the formal solution

σ̂t (τ ) = eLτ σ̂t (0), (D3)

for the t-dependent initial state σ̂t (0) = Ô2ρ̂(t). The required
two-time correlation function in Eq. (D1) thus be rewritten as

⟨Ô1(t + τ )Ô2(t)⟩ = TrS{Ô1(0)σ̂t (τ )}. (D4)

1. No-quantum-jump (NQJ) approximation

Assuming a standard Lindblad form for the Liovuille super-
operator L [63]

L[ρ̂] = −i[ĤS,ρ̂] +
∑

αβ

γαβ

(
L̂βρ̂L̂†

α − 1
2
{L̂†

αL̂β ,ρ̂}
)

,

(D5)
where γαβ defines a decay matrix, L̂α are system jump opera-
tors associated with a model system-reservoir interaction, and
ĤS is the system Hamiltonian (undriven or driven HTC model).
The matrix γαβ can be diagonalized together with a redefinition
of the jump operators in order to obtain a master equation in
Lindblad (diagonal) form, which preserves positivity of ρ̂ [63].
For jump operators L̂α and L̂†

α that are eigenoperators of the
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system Hamiltonian ĤS we have [ĤS,L̂
†
αL̂β] = 0, and we can

write

L[ρ̂] = (L0 + L1)[ρ̂], (D6)

L0 can be written as the non-Hermitian commutator

L0[ρ̂] = −i(H0ρ̂ − ρ̂Ĥ
†
0 ), (D7)

where

Ĥ0 = ĤS − i

2

∑

αβ

γαβÂ†
αÂβ , (D8)

is an effective Hamiltonian with eigenstates |ϵ̄j ⟩ that satisfy
complex-eigenvalue equations Ĥ0|ϵ̄j ⟩ = ϵ̄j |ϵ̄j ⟩ and ⟨ϵ̄j |Ĥ †

0 =
ϵ̄∗
j ⟨ϵ̄j |, with Im[ϵ̄j ] < 0. This effective Hamiltonian is associ-

ated with the nonunitary evolution operator

Û0(τ ) = exp[−iĤ0τ ], (D9)

such that the state norm decays with time as ⟨ϵ̄j |ϵ̄j ⟩t =
exp[2Im[ϵ̄j ]t].

The recycling term in Eq. (D6) is given by

L1[ρ̂] =
∑

αβ

γαβ Âβρ̂Â†
α, (D10)

and becomes the basis for our calculation of the emission
and transmission spectra in organic cavities. When the system
density matrix ρ̂(t) is such that the modified initial condition
σt (0) in Eq. (D3) satisfies, for every t , the equality

L1[σ̂t (0)] = 0, (D11)

then the two-point correlation function in Eq. (D4) can be
written as

⟨Ô1(t + τ )Ô2(t)⟩ = TrS{Ô1 eL0τ σ̂t (0)}

= TrS{Ô1Û0(τ )σ̂t (0)Û †
0 (τ )}. (D12)

Expanding the modified initial density matrix σ̂t (0) in the
eigenstates of Ĥ0 as

σ̂t (0) =
∑

ij

σij (t)|ϵ̄i⟩⟨ϵ̄j |, (D13)

allows us to write Eq. (D12) in the simple form

⟨Ô1(t + τ )Ô2(t)⟩ =
∑

ij

⟨ϵi |Ô1|ϵj ⟩ e−iωij τ+κij τ σij (t), (D14)

where ωij = Re[ϵ̄i] − Re[ϵ̄j ] and κij = Im[ϵ̄i] + Im[ϵ̄j ]. The
corresponding spectrum of fluctuations gives

S12(ω,t) = Re
∫ ∞

0
dτ ⟨Ô1(t + τ )Ô2(t)⟩eiωτ

=
∑

kij

ρkj (t)⟨ϵk|Ô†
2|ϵi⟩⟨ϵi |Ô1|ϵj ⟩

κij

(ω − ωij )2 + κ2
ij

,

(D15)

where in the last line we used

σij (t) = ⟨ϵi |Ô2ρ̂(t)|ϵj ⟩ =
∑

k

⟨ϵi |Ô2|ϵk⟩ρkj (t), (D16)

with ρkj (t) = ⟨ϵk|ρ̂(t)|ϵj ⟩ being an element of the system
density matrix in the eigenbasis of Ĥ0. In the steady state

(t → ∞), the fluctuations become stationary and the spectrum
becomes independent of the absolute time t . It is reasonable
to assume that in the steady state the system density matrix
ρ̂ becomes diagonal in the energy eigenbasis, i.e., ρ̂ =∑

j ρj |ϵj ⟩⟨ϵj |. If in addition to the mixed character of the

system state, the fluctuation operators satisfy Ô1 = Ô
†
2, which

is the relevant case for cavity emission and absorption, the
spectrum of fluctuations in Eq. (D15) simplifies even further
to read

S(ω) =
∑

ij

ρj |⟨ϵi |Ô2|ϵj ⟩|2
κij

(ω − ωij )2 + κ2
ij

, (D17)

which is the form used in the main text to model the spectra of
organic microcavities, under the approximation that Im[ϵi] ≪
Im[ϵj ] when |ϵi⟩ is in the ground-state manifold and |ϵj ⟩ is a
polariton eigenstate of the Holstein-Tavis-Cummings model.
For the Lindblad quantum master equation in Eq. (38), we thus
have

κij ≈ 0j /2 = 1
2

∑

i

γij . (D18)

2. Validity of the NQJ approximation

For our purposes, we specialize the discussion to system
states ρ̂(t) that involve at most one electronic excitation or
photon in the cavity, but any possible number of purely
vibrational excitations. We assume that at time t the system
can be described by a state of the form

ρ̂(t) = ρ̂(0)(t) + ρ̂(1)(t), (D19)

where

ρ̂(0)(t) =
∑

ii ′

ρii ′(t)|ϵi⟩⟨ϵi ′ | (D20)

is the reduced density matrix of the system projected onto the
ground-state manifold |ϵi⟩, and

ρ̂(1)(t) =
∑

jj ′

ρjj ′(t)|ϵj ⟩⟨ϵj ′ |, (D21)

into the polariton manifold |ϵj ⟩, following the notation
convention in the main text for the HTC eigenstates. The
ground manifold eigenstates states have the form

|ϵi⟩ = |g1g2 . . . gN ⟩|0c⟩|{v}⟩i , (D22)

where |0c⟩ is the vacuum state of the cavity and |{v}⟩i =
|v1v2 . . . vN ⟩i describes the vibrational eigenstate of each
molecule in the ensemble in the electronic ground state |g⟩.
On the other hand, HTC polariton eigenstates can be written as

|ϵj ⟩ = bj

∣∣ψe
j

〉
|0c⟩ + cj

∣∣φg
j

〉
|1c⟩, (D23)

where |ψe
j ⟩ is an electron-vibration state with any number of

vibrational excitations but at most one molecule in its excited
electronic state |e⟩, and |φg

j ⟩ is a state with any number of vi-
brational excitations but with all molecules in the ground elec-
tronic state |g⟩. For a cavity field near resonant with the bare
molecular transition frequency, we have |cj |2 ≈ |bj |2 ≈ 1/2.

We now consider the action of the electronic lowering
operator σ−

n ≡ |gn⟩⟨en|, where n labels a molecule in the
ensemble, and the cavity photon annihilation operator â on
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the one-quantum energy eigenstates in the form of Eq. (D23).
For a dipole transition we have

σ̂−
n

∣∣ϵ(1)
j

〉
= bj

∣∣γ g
j

〉
|0c⟩ = bj

∑

k

vjk

∣∣ϵ(0)
k

〉
, (D24)

where we defined |γ g
j ⟩ ≡ σ−

n |ψe
j ⟩. For the cavity photon

operator we have

â
∣∣ϵ(1)

j

〉
= cj

∣∣φg
j

〉
|0c⟩ = cj

∑

k

ujk

∣∣ϵ(0)
k

〉
. (D25)

Equations (D24) and (D25) show that the identities

â2
∣∣ϵ(1)

j

〉
= (σ̂−

n )2
∣∣ϵ(1)

j

〉
= 0 (D26)

hold for all one-quantum eigenstates |ϵj ⟩ and molecule index
n. Physically, since the operators σ̂n and â remove one quantum
of electronic of cavity field energy, respectively, from the light-
matter system, leaving the state in the manifold spanned by
the zero-quantum eigenstates |ϵi⟩, no further high-frequency
de-excitations are allowed.

We illustrate the use of Eq. (D26) with an example.
Consider the leakage photoluminescence (LPL) spectrum.
In this case, we are interested in evaluating the two-point
correlation function ⟨â†(t + τ )â(t)⟩, for a dissipative cavity
dynamics involving a recycling term of the form [61]

L1[ρ̂] = κ â ρ̂ â†, (D27)

where κ > 0 is the decay rate for an empty cavity. Condition
(D11) for Ô2 = â thus reads

L1[âρ̂] ≡ κ â2ρ̂â† = κ â2(ρ̂(0) + ρ̂(1))â† = 0, (D28)

where we have inserted our one-quantum ansatz for ρ̂ from
Eq. (D19) and used Eq. (D26). The validity of the condition in
Eq. (D11) allows us to write the stationary LPL spectrum as

SLPL(ω) =
∑

ij

ρj |⟨ϵi |â|ϵj ⟩|2
κij

(ω − ωij )2 + κ2
ij

, (D29)

which is a special case of Eq. (D17) for Ô2 = â.
Contributions to the state ρ̂ from two-quantum states

ρ̂(2) give L1[âρ̂] ̸= 0. In this case, the derived formula for
SLPL(ω) becomes inaccurate. Weak driving of the cavity,
either coherent or incoherent, such that ⟨â†â⟩ ≪ 1 ensures
that the one-quantum ansatz for ρ̂ is appropriate to interpret
the observable LPL spectrum.

APPENDIX E: ABSORPTION OF A WEAK
DRIVING FIELD

We consider the driven Holstein-Tavis-Cummings (HTC)
Hamiltonian Ĥ (t) = Ĥ + V̂p(t), where Ĥ is the undriven HTC
model in Eq. (1) and

V̂p(t) = !p(â† e−iωpt + â eiωpt ) (E1)

is the periodic driving term with frequency ωp and a small
amplitude !p ≪

√
N! ≪ ωc. The quantum master equation

for the system density matrix now reads ˙̂ρ = L[ρ̂] + Lp[ρ̂],
where L[ρ̂] is the time-independent Liouville superoperator
defined in Eq. (D6) and

Lp[ρ̂] = −i[V̂p(t),ρ̂] (E2)

is treated as a perturbation to the system dynamics. We expand
the system state ρ̂ as a perturbative expansion in the amplitude
!p of the form

ρ̂ ≈ ρ̂(0) + ρ̂(1) + ρ̂(2), (E3)

where ρ̂(n) is O(!n
p) in the driving amplitude. Note the

different notational meaning from Eq. (D19). We are interested
in the population of the j th polariton eigenstate to second order
in the driving amplitude, i.e., ρ

(2)
j = ⟨ϵj |ρ̂(2)(t)|ϵj ⟩, subject to

the initial condition

ρ̂(0) = |G⟩⟨G|, (E4)

where |G⟩ is the absolute ground state of the system. This
choice is appropriate to describe an undriven cavity at room
temperature (kbT ≪ ωv).

The zeroth-order equations of motion in the HTC eigenbasis
are given by Eq. (38), i.e.,

d

dt
ρ̂(0) =

∑

ij

γij

2
(2|ϵi⟩⟨ϵj |ρ̂(0)|ϵj ⟩⟨ϵi | − {|ϵj ⟩⟨ϵj |,ρ̂(0)}).

(E5)

Since the initial condition in Eq. (E4) is a zero-energy
eigenstate of the jump operator |ϵi⟩⟨ϵj |, the zeroth order
solution is ρ

(0)
j = 0 = ρ

(0)
ij and ρi = δGi , where ρij = ⟨ϵi |ρ̂|ϵj ⟩

is an optical coherence and ρi = ⟨ϵi |ρ̂|ϵi⟩ is a vibrational
population in the ground-state manifold.

We then proceed to the first-order equations of motion,
which read

ρ̇
(1)
i =

∑

ij

γijρ
(1)
j , (E6)

ρ̇
(1)
j = −

∑

ij

γiρ
(1)
j , (E7)

ρ̇
(1)
ij = −κijρ

(1)
ij + iδiGVij (t), (E8)

where κij ≈
∑

i ′ γi ′j /2, ignoring the decay of states |ϵi⟩ in
the ground-state manifold. The coherence equation carries a
contribution from the perturbation in Eq. (E2), with Vij (t) =
⟨ϵi |V̂p(t)|ϵj ⟩. Given the initial condition in Eq. (E4), the
equation for the first order coherence can be formally solved
to give

ρ
(1)
ij (t) = i δiG

∫ t

0
dτ e−κij (t−τ ) Vij (τ ). (E9)

Proceeding to second order, we can write the polariton
population equation as

ρ̇
(2)
j (t) = −

∑

i

γijρ
(2)
j (t) + i2 Im

{
VjG(t)ρ(1)

Gj (t)
}
, (E10)

which can be formally solved using Eq. (E9) to read

ρ
(2)
j (t) = e−0j ρ

(2)
j (t) +

∫ t

0
dt ′e−0j (t−t ′)K(t ′), (E11)

where 0j =
∑

ij γij is the polariton decay rate and we defined
the second-order kernel

K(s) = 2 Re
{∫ s

0
dτ e−κGj (s−τ ) VjG(s)VGj (τ )

}
. (E12)
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In the steady state (t → ∞), the first term in Eq. (E11)
vanishes for all initial states ρ̂(0), so we ignore it. Inserting the
definition in Eq. (E1) and integrating the kernel K(t ′) gives
the polariton population

ρ
(2)
j (t) = 2|!p|2|⟨G|â|ϵj ⟩|2Re

{
1

iαj

[
1
0j

− e−0j t

0j

−
(

e(0j −iαj )t

0j − iαj

− 1
0j − iαj

)]}
e−0j t , (E13)

where αj ≡ (ωp − ωGj ) − iκGj . In the steady-state limit t →
∞, only the first term in square brackets survives, giving the
desired stationary polariton population

ρ
(2)
j (∞) = 2|!p|2

0j

|⟨G|â|ϵj ⟩|2
κGj

(ωp − ωGj )2 + κ2
Gj

. (E14)

The stationary polariton population ρj enters in the expres-
sion for the bound fluorescence spectra from Eq. (D17), with

Ô2 = µ̂(+), which reads

Sµ̂(ω) =
∑

ij

ρj |⟨ϵi |µ̂(+)|ϵj ⟩|2
κij

(ω − ωij )2 + κ2
ij

. (E15)

For ρj given by Eq. (E14), we integrate Sµ̂ over all emission
frequencies ω to obtain the absorption spectra A(ωp) from
Eq. (44) to read

A(ωp)
|!p|2

=
∑

ij

(
π

0j

) |⟨G|â|ϵj ⟩|2 κGj

(ωp − ωGj )2 + κ2
Gj

|⟨ϵi |µ̂(+)|ϵj ⟩|2,

(E16)
where we have used a Lorentzian normalization relation. For
decoherence due to radiative decay only, we have κGj ≈ 0j /2.
However, it is possible to generalize the microscopic origin
of the coherence decay rate κGj by extending the master
equation in Eq. (C32) in order to account for ultrafast
electronic and vibrational relaxation processes that do not
involve fluorescence.
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